

- Biosignatures
- Generations of stars

AMINO ACIDS

• Current strategies

Axel Brandenburg
(Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230)

Methane + Oxygen = ?

- A. Water
- B. Carbon dioxide
- C. All of the above

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Lect. 3: Biosignatures from space

A search for life on Earth from the Galileo spacecraft

Carl Sagan * , W. Reid Thompson * , Robert Carlson † , Donald Gurnett ‡ & Charles Hord $^\$$

- * Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
- † Atmospheric and Cometary Sciences Section, Jet Propulsion Laboratory, Pasadena, California 91109, USA
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA
- & Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA

A search for life on Earth from the Galileo spacecraft Lecture 3

Carl Sagan^{*}, W. Reid Thompson^{*}, Robert Carlson[†], Donald Gurnett[‡] & Charles Hord[§]

- * Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
- † Atmospheric and Cometary Sciences Section, Jet Propulsion Laboratory, Pasadena, California 91109, USA
- ‡ Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA
- \$ Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA

Near-infrared

RGS, p.268, Fig. 8.7

Both methane and ozone!

- Methane: absorption around $7 8 \mu m$
- Carbondioxide: absorption around 15 μm
- Lots of water lines

$$\lambda = \frac{c}{v}$$
=\frac{3 \times 10^8 m/s}{4 \times 10^{13} s^{-1}}
= 0.75 \times 10^{-5} m
= 7.5 \times 10^{-6} m
= 7.5 \mu m

Why this 276 K for Earth?

- A. Surface temperature of the Earth
- B. Temperature higher in the atmosphere
- C. Contributions from oceans
- D. Caused by chlorophyl

Match?

- Yes, a few km
- Think of IR telescopes

Why this 276K for Earth?

- A. Surface temperature of the Earth
- B. Temperature higher in the atmosphere
- C. Contributions from oceans
- D. Caused by chlorophyl

Examples: Infrared telescope: Sofia

• 4-12 km above the ground

How to find biospheres

- No CH₄ reservoir on warm Earth
- Only 1 molecule in ever 600,000
- Enough for case beyond reasonable doubt

Reflectance spectrum

- Sharp rise in reflectance
- Red-edge
- Chlorophyll
- Figs 8.7, 8, 9, 12
- Also from Galileo: radio signals

Potential habitats

- Focus on carbon-based life & water
 - Complex compounds, diverse, versatile
- Habitable zones (HZ)
 - If ok for 3% of planets: next one 20 ly
 - one planet every 6 ly, $(33*6^3)^{1/3}=20$
- HZ excludes icy worlds, but water worlds?
- Also: atmosphere, not too many impacts
 - Jupiter shields us from many impacts

Older stars: iron fraction?

- A. More Fe than younger stars
- B. The same
- C. Less

Example of Kepler 444: born when 20% age of the Universe

- Fewer stellar generations
- But only of massive stars
- Interstellar medium has less Fe
- Resulting stars have less Fe

Older stars: iron fraction?

- A. More than younger stars
- B. The same
- C. Less

Older stars: iron fraction?

of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

Details	
Mass	0.758 (± 0.043) <i>M</i> ⊙
Radius	0.752 (± 0.014) R _☉
Temperature	5040 (± 74.0) K
Metallicity [Fe/H]	-0.55 (± 0.07) dex
Age	11.23 (± 0.99) Gyr

Other aspects

- Kepler-444?
- Ancient life?

 $10^{-0.55} = 0.28$ times solar = 28% solar Fe abundance

But [Fe/H] perhaps not important

Mon. Not. R. Astron. Soc. 346, L42-L44 (2003)

Metallicity, planetary formation and migration

Mario Livio[⋆] and J. E. Pringle[†]

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

Accepted 2003 October 21. Received 2003 October 16; in original form 2003 September 25

ABSTRACT

Recent observations show a <u>clear correlation</u> between the probability of hosting a planet and the <u>metallicity of the parent star.</u> As radial velocity surveys are biased, however, towards detecting planets with short orbital periods, the probability—metallicity correlation could merely reflect a dependence of migration rates on metallicity. We investigated the possibility, but find no basis to suggest that the migration process is sensitive to the metallicity. The indication is, therefore, that a higher metallicity results in a higher probability for planet *formation*.

→ [Fe/H] matters for making Jovian planets, not for terrestrial ones

Next time

- Finding more planets (& in future)
- Other methods
- Planets around binaries
- Tidally locked planets

- BS: 370 414
- RGS: 235 260
- Lon: 339 342