Astrobiology Pages 11-17 in RGS Axel Brandenburg (Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230) # Last time - The 4 building blocks - Lips, carbohydrates, proteins, DNA&RNA - Their roles - Cell walls, energy & structual support, catalysts (enzymes), information ## What kind of molecule? - A. Lipid - B. Carbohydrate - C. Hydrocarbon - D. Amino acid - E. Nucleotide Hint: find the answer by elimination #### What kind of molecule? - A. Lipid - B. Carbohydrate - C. Hydrocarbon - D. Amino acid - E. Nucleotide ... as in deoxyribonucleic acid # Nucleic acid staircase # DNA -> RNA -> Proteins - Proteins assembled based on information in DNA - Are catalysts (enzymes) - -Some for helices - Others form sheets ## Different bases - Two groups of bases: - pyrimidines T,C T in DNA U in RNA - purines A,G - These two groups pair in specific ways - -T-A and A-T A-U pair for RNA -C-G and G-C ## Genetic code - Alphabet of 4 letters - Words with 3 letters - Each word → a particular amino acid - Gene → a particular protein #### **Second Letter** | | | U | | С | | Α | | G | | | _ | |---------------|---|--------------------------|------------|--------------------------|-----|--------------------------|---------------------|--------------------------|--------------------|----------------|---------------| | 1st
letter | 5 | UUC A
UUA
UUG | Phe
Leu | UCU
UCC
UCA
UCG | Ser | UAU
UAC
UAA
UAG | Tyr
Stop
Stop | UGU
UGC
UGA
UGG | Cys
Stop
Trp | ⊃∪∢⊍ | 3rd
letter | | | U | UU A G | Leu | CCU
CCC
CCA
CCG | Pro | CAU
CAC
CAA
CAG | His
GIn | CGU
CGC
CGA
CGG | Arg | ⊃ U ∢ U | | | | A | AUU
AUC
AUA
AUG | lle
Met | ACU
ACC
ACA
ACG | Thr | AAU
AAC
AAA
AAG | Asn
Lys | AGU
AGC
AGA
AGG | Ser
Arg | ⊃∪∢⊍ | | | | U | GUC
GUA
GUG | Val | GCU
GCC
GCA
GCG | Ala | GAU
GAC
GAA
GAG | Asp
Glu | GGU
GGC
GGA
GGG | Gly | ⊃ C ∢ G | | # Examples • ACC, ACA, ACT, ACG → threonine • Why? | Second Letter | | | | | | | | | | | |---------------|---|------------------------------------|----------------------------------|-------------------------------------|------------------------------------|-------------------------|--|--|--|--| | | | U | С | Α | G | | | | | | | 1st
letter | U | UUU Phe
UUC
UUA Leu
UUG | UCU
UCC Ser
UCA
UCG | UAU Tyr
UAC UAA Stop
UAG Stop | UGU Cys
UGC UGA Stop
UGG Trp | U C A G | | | | | | | С | CUU Leu
CUA CUG | CCU
CCC Pro
CCA
CCG | CAU His
CAC CAA GIN
CAG | CGU CGC Arg | U
C
A
G | | | | | | | A | AUU IIe
AUA
AUG Met | ACU
ACC Thr
ACA
ACG | AAU Asn
AAC AAA Lys
AAG | AGU Ser
AGC AGA Arg | U letter
C
A
G | | | | | | | G | GUU
GUC Val
GUA
GUG | GCU
GCC Ala
GCA
GCG | GAU Asp
GAC GIU
GAG GIU | GGU
GGC
GGA
GGG | U C A G | | | | | # Other examples - TGT, TGC → cysteine - TGA "stop" • TGG tryptophan second Letter | Idii | | U | С | Α | G | | |---------------|---|------------------------------------|------------------------------|---------------------------------|------------------------------------|-------------------------| | 1st
letter | U | UUU Phe
UUC
UUA Leu
UUG | UCU
UCC Ser
UCA
UCG | UAU Tyr
UAC Stop
UAG Stop | UGU Cys
UGC UGA Stop
UGG Trp | U
C
A
G | | | С | CUU Leu
CUC Leu
CUA
CUG | CCU
CCC Pro
CCA
CCG | CAU His
CAC CAA GIN
CAG | CGU CGC Arg | U
C
A
G | | | A | AUU IIe
AUA
AUG Met | ACU ACC Thr
ACA ACG | AAU Asn
AAC AAA Lys
AAG | AGU Ser
AGC AGA Arg | U letter
C
A
G | | | G | GUU
GUC Val
GUA
GUG | GCU
GCC Ala
GCG | GAU Asp
GAC GIU
GAG GIU | GGU
GGC
GGA
GGG | UCAG | # Think about other worlds - Large impacts can blast rocks into space - Life (spores) might survive in rocks - Suppose life on Mars is found with - Different sets of amino acids - Right-handed versions of amino acids - Does this support/contradict hypothesis that life migrated from Mars? # How many words possible? A. $$4x3=12$$ B. $$4x3x2x1=24$$ C. $$4^3 = 64$$ D. $$3^4 = 81$$ # How many words possible? A. $$4x3=12$$ B. $$4x3x2x1=24$$ C. $$4^3 = 64$$ D. $$3^4 = 81$$ Redundancy In most cases: first 2 letters alone determine which amino acid # How many words possible? - 3. The biochemistry on the early Earth (or on another world) could easily be slightly different from the biochemistry as we know it. - (i) Briefly explain why it is plausible that the early genetic code might have been a binary code with just two base pairs. Make reference to related modern findings mentioned during the lecture. - (ii) How many different amino acids would an early protein contain if it was the result of such a binary code? - (iii) Suppose the early genetic code used just G bases (guanine) and C bases (cytosine), and suppose further that the words (=codons) of the early genetic code contained already three letters (similar to the modern one; see below), which amino acids would you expect in such early proteins? - (iv) Is it reasonable that the early code contained glycine (Gly)? # Properties of nucleic acids - In DNA: pentose sugar deoxyribose - Very stable - Double-stranded - Replicate - RNA - -Less stable - Singly stranded # **Evolution** - Mutations - Most are lethal - Many have no effect - A few can carry benefits #### Use of nucleobases - The sequence contains genetic information - The sequence can be copied - TAA CAG - ATT GTC - One word (codon) \rightarrow one amino acid - $TAA \rightarrow stop$ (also nonsence or junk DNA) - CAG → Gln (=Glutamine) - In RNA, base U (=uracil) ←→ base T thymine #### **Second Letter** | | | U | | С | | Α | | G | | | _ | |---------------|---|--------------------------|------------|--------------------------|-----|--------------------------|---------------------|--------------------------|--------------------|----------------|---------------| | 1st
letter | 5 | UUC A
UUA
UUG | Phe
Leu | UCU
UCC
UCA
UCG | Ser | UAU
UAC
UAA
UAG | Tyr
Stop
Stop | UGU
UGC
UGA
UGG | Cys
Stop
Trp | ⊃∪∢⊍ | 3rd
letter | | | U | UU A G | Leu | CCU
CCC
CCA
CCG | Pro | CAU
CAC
CAA
CAG | His
GIn | CGU
CGC
CGA
CGG | Arg | ⊃ U ∢ U | | | | A | AUU
AUC
AUA
AUG | lle
Met | ACU
ACC
ACA
ACG | Thr | AAU
AAC
AAA
AAG | Asn
Lys | AGU
AGC
AGA
AGG | Ser
Arg | ⊃∪∢⊍ | | | | U | GUC
GUA
GUG | Val | GCU
GCC
GCA
GCG | Ala | GAU
GAC
GAA
GAG | Asp
Glu | GGU
GGC
GGA
GGG | Gly | ⊃ C ∢ G | | ## **Mutations** - Example of adding one letter - the cat ate the rat - the aca tat eth era t - One word (codon) \rightarrow one amino acid - $TAA \rightarrow stop$ (also nonsence or junk DNA) - CAG → Gln (=Glutamine) - In RNA, base U (=uracil) ←→ base T thymine # Which of the following mutations has the **greatest** effect? - A. One that changes a single base in a region of non-coding DNA; - B. one that changes the third letter; - C. one that deletes one base in the middle of a gene? #### Greatest effect? - A. One that changes a single base in a region of non-coding DNA; - → Has a chance in not doing much damage - B. one that changes the third letter; - → has no effect in many cases - C. one that deletes one base in the middle of a gene? - → see example with the cat! # Next time - Transfer of genetic information - Biomarkers, biosignatures - Origin of biomolecules - -RGS pp. 13-15, Lon pp. 214-218 - −BS pp. 204-212