

Astrobiology

Pages 11-17 in RGS

Axel Brandenburg

(Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230)

Last time

- The 4 building blocks
 - Lips, carbohydrates, proteins, DNA&RNA
- Their roles
 - Cell walls, energy & structual support, catalysts (enzymes), information

What kind of molecule?

- A. Lipid
- B. Carbohydrate
- C. Hydrocarbon
- D. Amino acid
- E. Nucleotide

Hint: find the answer by elimination

What kind of molecule?

- A. Lipid
- B. Carbohydrate
- C. Hydrocarbon
- D. Amino acid
- E. Nucleotide

... as in deoxyribonucleic acid

Nucleic acid staircase

DNA -> RNA -> Proteins

- Proteins assembled based on information in DNA
- Are catalysts (enzymes)
 - -Some for helices
 - Others form sheets

Different bases

- Two groups of bases:
 - pyrimidines T,C

T in DNA U in RNA

- purines A,G
- These two groups pair in specific ways
 - -T-A and A-T

A-U pair for RNA

-C-G and G-C

Genetic code

- Alphabet of 4 letters
- Words with 3 letters
- Each word → a particular amino acid
- Gene → a particular protein

Second Letter

		U		С		Α		G			_
1st letter	5	UUC A UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	⊃∪∢⊍	3rd letter
	U	UU A G	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His GIn	CGU CGC CGA CGG	Arg	⊃ U ∢ U	
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	⊃∪∢⊍	
	U	GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	⊃ C ∢ G	

Examples

• ACC, ACA, ACT, ACG → threonine

• Why?

Second Letter										
		U	С	Α	G					
1st letter	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G				
	С	CUU Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG	CGU CGC Arg	U C A G				
	A	AUU IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G				
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GIU GAG GIU	GGU GGC GGA GGG	U C A G				

Other examples

- TGT, TGC → cysteine
- TGA "stop"

• TGG tryptophan second Letter

Idii		U	С	Α	G	
1st letter	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	С	CUU Leu CUC Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG	CGU CGC Arg	U C A G
	A	AUU IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCG	GAU Asp GAC GIU GAG GIU	GGU GGC GGA GGG	UCAG

Think about other worlds

- Large impacts can blast rocks into space
 - Life (spores) might survive in rocks
- Suppose life on Mars is found with
 - Different sets of amino acids
 - Right-handed versions of amino acids
- Does this support/contradict hypothesis that life migrated from Mars?

How many words possible?

A.
$$4x3=12$$

B.
$$4x3x2x1=24$$

C.
$$4^3 = 64$$

D.
$$3^4 = 81$$

How many words possible?

A.
$$4x3=12$$

B.
$$4x3x2x1=24$$

C.
$$4^3 = 64$$

D.
$$3^4 = 81$$

Redundancy

In most cases: first 2 letters alone determine which amino acid

How many words possible?

- 3. The biochemistry on the early Earth (or on another world) could easily be slightly different from the biochemistry as we know it.
 - (i) Briefly explain why it is plausible that the early genetic code might have been a binary code with just two base pairs. Make reference to related modern findings mentioned during the lecture.
 - (ii) How many different amino acids would an early protein contain if it was the result of such a binary code?
 - (iii) Suppose the early genetic code used just G bases (guanine) and C bases (cytosine), and suppose further that the words (=codons) of the early genetic code contained already three letters (similar to the modern one; see below), which amino acids would you expect in such early proteins?
 - (iv) Is it reasonable that the early code contained glycine (Gly)?

Properties of nucleic acids

- In DNA: pentose sugar deoxyribose
 - Very stable
 - Double-stranded
 - Replicate
- RNA
 - -Less stable
 - Singly stranded

Evolution

- Mutations
 - Most are lethal
 - Many have no effect
 - A few can carry benefits

Use of nucleobases

- The sequence contains genetic information
- The sequence can be copied
 - TAA CAG
 - ATT GTC
- One word (codon) \rightarrow one amino acid
 - $TAA \rightarrow stop$ (also nonsence or junk DNA)
 - CAG → Gln (=Glutamine)
- In RNA, base U (=uracil) ←→ base T

thymine

Second Letter

		U		С		Α		G			_
1st letter	5	UUC A UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	⊃∪∢⊍	3rd letter
	U	UU A G	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His GIn	CGU CGC CGA CGG	Arg	⊃ U ∢ U	
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	⊃∪∢⊍	
	U	GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	⊃ C ∢ G	

Mutations

- Example of adding one letter
 - the cat ate the rat
 - the aca tat eth era t
- One word (codon) \rightarrow one amino acid
 - $TAA \rightarrow stop$ (also nonsence or junk DNA)
 - CAG → Gln (=Glutamine)
- In RNA, base U (=uracil) ←→ base T

thymine

Which of the following mutations has the **greatest** effect?

- A. One that changes a single base in a region of non-coding DNA;
- B. one that changes the third letter;
- C. one that deletes one base in the middle of a gene?

Greatest effect?

- A. One that changes a single base in a region of non-coding DNA;
 - → Has a chance in not doing much damage
- B. one that changes the third letter;
 - → has no effect in many cases
- C. one that deletes one base in the middle of a gene?
 - → see example with the cat!

Next time

- Transfer of genetic information
- Biomarkers, biosignatures
- Origin of biomolecules
 - -RGS pp. 13-15, Lon pp. 214-218
 - −BS pp. 204-212