

Carbon in the Universe Miller/Urey experiment Murchison meteorite Pages 16-21 in RGS

Axel Brandenburg

(Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230)

Organic matter in the Universe

Carbon comes from nuclear fusion in stars

 Late stages of evolution Nonburning hydrogen asymptotic giant 10⁶7 Hydrogen fusion branch stars Helium fusion 10^{4} Carbon fusion horizontal branch 10^{2} stars Oxygen fusion red giants Neon fusion Magnesium fusion main sequence Silicon fusion (dwarfs) 10^{-4} Iron ash 20000 40000 5000 250 10000 an "old" sun T(K)

Stellar evolution

- Stars consume food (H)
- Expell waste (light, gas, dust)
- Grow (protostar, main sequence, giant)
- Die, and produce offspring from their dust

...are stars alive?

Stellar "evolution"

- No Darwinian evolution
- This "life" cycle is more like a motor

But let's now look at their waste...

Similarity of spectra with coal

- Circumstellar envelope of IRAS21282+5050
- Aromatic carbons *common* in space
- Coal the very bottom of bottomup approach

p.15 of RGS

Molecules around stars

smallest	hydrogen, carbon and oxygen compounds					
• H ₂	OH	co	CO ⁺	H ₂ O		
112	HOC+	C_2O	CO ₂	H_3O^+		
	C ₃ O	CH ₂ CO	HCOOH	H ₂ COH ⁺		
• CO, CO ₂	C ₅ O	CH ₃ CHO	C2H4O (circ)	CH ₃ OCHO		
co, co_2	CH ₃ OCH ₃	CH ₃ CH ₂ OH	(CH ₃) ₂ CO			
• HCOOH	hydrogen, carbon and nitrogen compounds					
• ncoon	NH	CN	NH ₂	HCN		
	NH ₃	HCNH+	H ₂ CN	HCCN		
· CII CII OII	CH ₂ NH	HC ₂ CN	HC ₂ NC	NH ₂ CN		
• CH ₃ -CH ₂ -OH	CH ₃ NC	HC ₃ NH ⁺	C ₅ N	CH ₃ NH ₂		
_	CH ₃ C ₃ N	CH ₃ CH ₂ CN	HC7N	CH ₃ C ₅ N		
• NH ₃ , HCN	hydrogen, carbon (possibly), nitrogen and oxygen compounds					
37	NO	HNO	N ₂ O	HNCO		
LICNO	other species					
• H_2S , N_2O	SH	CS	SO	SO ⁺		
	SiC	SiN	SiO	SiS		
• C ₆₀ , C ₇₀	AICI	KCI	HF	AIF		
C_{60}, C_{70}	H ₂ S	C ₂ S	SO ₂	ocs		
	NaCN	MgCN	MgNC	H ₂ CS		
largest	HSiC ₂	SiC ₃	SiH ₄	SiC ₄		
iaisost						

hydrogen species

HD

CH+

 C_2H_2

C₄H

C₆H

hydrogen and carbon compounds

H3+

 C_2

C5

H₂C₆

C₃H (lin)

 H_2D^+

CH₂

 C_2H_4

C7H

C₃H (circ)

 H_2

CH

CH₃

H2CCC (lin)

CH₃C₂H

Darwin's early ideas

(letter to Hooker of 1871)

• "... we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, etc, present that a protein compound was chemically formed ready to undergo still more complex changes"

Notes of music

- Carl Sagan:
 - -Building blocks like notes to the music
 - Not the music itself
- Ramming right molecules together
 - as unlikely as hearing Beethooven's 9th when letting monkeys loose with roomfull of instruments

Putting the right molecules together

- Need to produce order
 - → drive away from equilibrium
- Energy required to generate & sustain order

Source	Energy/Jm ⁻² yr ⁻¹
total radiation from the Sun	1 090 000.0
ultraviolet light	1 680.0
electric discharges (lightning)	1.68
cosmic rays	0.0006
radioactivity (to 1 km depth)	0.33
volcanoes	0.05
shock waves (atmospheric entry)	0.46

Comparison with Frankenstein experiment

- Reducing atmosphere:
- H₂, H₂O,
 NH₃, CH₄,
 Oparin/Haldane
- Discharges
- Steam

After 1 week....

- Brown substance
- Glycine, alanine, (valine, proline, ...)

Role of minerals

- Support
 - Amino acids polymerize on surfaces
- Selection
 - Different crystal faces select left/right
 - Both possible → natural selection chose one
- Catalysis
 - $-N_2$ to N_3H via metalic surfaces
 - Suitable in hydrothermal vents

Minerals as Templates?

- How could first RNA "genetic" strands arise?
- Lab experiments: clays + water + organics ⇒ complex organics, including RNA strands.
- Repeating chemical structure of minerals may facilitate assembly of complex organics!

Meteorites: organics from space

- Stony:
 - Chondrites: 86%
 - Ordinary (80% of those)
 - Carbonateous (5% of those)
 - •
 - Achondrites: 8%
- Iron: 6%

Meteorites: different types

- Stony:
 - Chondrites: 86%
 - Ordinary (80% of those)
 - Carbonateous (5% of those)
 - •
 - Achondrites: 8%
- Iron: 6%

Murchison meteorite

- September 28, 1969, 10:58 am, Melbourne
 - Observed as fireball, w/ smoke for 30s
 - -Broke up into pieces, altogether > 100kg
- Carbonaceous chondrite
 - Smelly when found
- Analyzed like moon rocks
 - −>15 amino acids, etc

Amino acid Abundance of amino acids

Organics in Muchison & Life

		Role	Life	Murchison meteorite
water		solvent	yes	yes
lipids (hydrocarbons and acids)		membranes, energy storage	yes	yes
sugars (monosaccharides)	1	support, energy storage	yes	yes
polysaccharides (polymerized sugars)	}		yes	no
amino acids	1	many (support, enzymes, etc.)	yes	yes
proteins (polymerized amino acids)	S		yes	no
phosphate			yes	yes
nitrogenous bases nucleic acids (polymerized sugars,	}	genetic information	yes	yes
phosphates and nitrogenous bases)			yes	no

- Long polymers absent (single sugars, no proteins)
- No nucleotide nor nucleic acids

Monomers of building blocks: ...what is not found

- A. amino acids
- B. sugars
- C. nucleotides
- D. lipids
- E. none (all are found)

Monomers of building blocks ...what is not found

- A. amino acids
- B. sugars
- C. nucleotides
- D. lipids
- E. none (all are found)

Organics in Muchison & Life

	Role	Life	Murchison meteorite
water	solvent	yes	yes
lipids (hydrocarbons and acids)	membranes, energy storage	yes	yes
sugars (monosaccharides)	support, energy storage	yes	yes
polysaccharides (polymerized sugars)		yes	no
amino acids	many (support, enzymes, etc.)	yes	yes
proteins (polymerized amino acids)		yes	no
phosphate	genetic information	yes	yes
nitrogenous bases		yes	yes
nucleic acids (polymerized sugars,	genetic information		
phosphates and nitrogenous bases)		yes	no

- Long polymers absent (single sugars, no proteins)
- No nucleotide nor nucleic acids

X: building block of life (→ all present in Muchison!)

The importance of the Miller/Urey experiment is

- A. It proved beyond doubt that life could have arisen natually on Earth;
- B. it showed that natural chemical reactions can produce building blocks for life;
- C. it showed that clay can catalyze the production of RNA.

The importance of the Miller/Urey experiment is

- A. It proved beyond doubt that life could have arisen natually on Earth;
- B. it showed that natural chemical reactions can produce building blocks for life;
- C. it showed that clay can catalyze the production of RNA.

Check by elimination

- proved beyond doubt that life could have arisen natually on Earth?
 - There was no life in this experiment
 - Just amino acids and other organics
- showed that clay can catalyze the production of RNA?
 - Clays were not involved here

The importance of the Miller/Urey experiment is

- A. It proved beyond doubt that life could have arisen natually on Earth;
- B. it showed that natural chemical reactions can produce building blocks for life;
- C. it showed that clay can catalyze the production of RNA.

What this really tells us:

- Making many of the building blocks is easy
 - delived from space
 - early atmospheric ?reducing conditions
 - Deep-sea vents (discussed later)
 - Heat & pressure from impacts
- Many possibilities ← no conclusive answ.
- Unclear how to assemble them

What we talked about

- Carbon produced in stars!
- Planetary system made of star dust
- Meteorites deliver amino acids and some of the bases of DNA
- Similar to Miller/Urey experiment
- Organics easy to make → no proofs they have to come from space

Next time

- Electrolysis experiment
 - $-2H_2O \rightarrow 2H_2 + O_2$
- Delivery by comets
- Panspermia Reading:
 - -RGS pp. 22-24, 28-29
 - -Lon pp. 383-384
 - _BS pp. 121-125