

On Wednesday (Sep 20)

- Lecture 10:00 10:15
 - Giving out HW3, review, Q/A
- Quiz 10:20 10:50 (closed book)
 - -3 pages (1p multiple choice)
 - -RGS pp. 1-34 + lecture notes
- Special accommodations
 - I have emailed those who contacted me
 - If you didn't, make sure you do

Today

- Replication first vs Metabolism first
- Early cells
- RNA world
- LUCA
- Reading:
 - -RGS pp. 30-34
 - -Lon pp. 193-195
 - −BS pp. 172-176, 206-208

Primitive cells

- Lipid bilayers
- Protein droplets (Oparin 1924)
- Dehydration rehydration (S Fox 1958)

Properties of protocells

- Confinement of organics within cells is advantageous:
 - Facilitates chemical reactions.
 - Cooperative relationships evolve.
- Membrane-like spheres easily made in lab experiments!
 - Cooled amino acids solutions.
 - Lipids in water.
- First "cell" may have been RNA replicating within simple membrane.

Abiotic "cells"

- Volcanic rock (pumice)
 - Small air pockets
 - Tiny compartments
 - Could house small chemical mixtures
 - First steps toward life (?)

Role of minerals

- Support
 - Amino acids polymerize on surfaces
- Selection
 - Different crystal faces select left/right
 - Both possible → natural selection chose one
- Catalysis
 - $-N_2$ to N_3H via metalic surfaces
 - Suitable in hydrothermal vents

Metabolism

- How to make a living (Longstaff 193)
- Use of catalysts
 - Speeds up reaction
 - Regardless of direction (!)
- Two types
 - Proteins
 - RNA catalysts (=ribozyme)

Three requirements

- Source of carbon (CO₂ or CH₂O)
- Source of energy
 - To reduce inorganic to org macromolecule
 - Electron donor (e.g. H₂)
- An oxidant
 - To harness chemical potential energy
 - Electron acceptor (e.g. O₂)

"Food" in Greek?

Troph (Greek) = food

- auto hetero
- photo chemo
- litho organo

- Photoautotroph
- Chemoautotroph
- Photoheterotroph
- Chemoheterotroph

Range of possibilities

Energy source	Sunlight	Photo-			
	Molecules	Chemo-			
Electron donor	Organic		Organo-		
	Inorganic		Litho-		-troph
Carbon source	Organic			Hetero-	
	Inorganic			Auto-	

- e.g.: Chemolithoheterotroph
- Altogether 8 possibilities!

Thiobacillus denitrificans

- Discovered 1904
 - $-0.5x1x3 \mu m^3$
- Soil & mud
 - -Oxidize $U(IV) \rightarrow U(VI)$
- Chemolithoautotroph or chemoautotroph
 - $-H_2S+CO_2 \rightarrow CH_2O+2S$

Gray bacterium in rock spaces

Always found to be growing Excreting CO₂
Rocks mineral structure depleted in Fe

- A. Chemoautotroph
- B. Lithoautotroph
- C. Photoautotroph
- D. Lithoheterotroph

Gray bacterium in rock spaces

Always found to be growing Excreting CO₂
Rocks mineral structure depleted in Fe

- A. Chemoautotroph
- B. Lithoautotroph
- C. Photoautotroph
- D. Lithoheterotroph

Blue-green in petri dish

Cells grow when exposed to sunlight Excrete O_2 Grow and produce O_2 as long as in sunlight

- A. Chemoautotroph
- B. Lithoautotroph
- C. Photoautotroph
- D. Lithoheterotroph

Blue-green in petri dish

Cells grow when exposed to sunlight Excrete O_2 Grow and produce O_2 as long as in sunlight

- A. Chemoautotroph
- B. Lithoautotroph
- C. Photoautotroph
- D. Lithoheterotroph

Metabolism/replication first?

- Organism needs 2 things
 - Replication (otherwise not self-sustaining)
- Turn disorder to ordered chem reactions to extract energy from surroundings
 - → metabolism, needed to control flow of energy

Advantage of RNA over DNA?

A. More stable?

B. Less stable?

Advantage of RNA over DNA?

A. More stable?

B. Less stable?

DNA transcription

- DNA → messenger RNA (mRNA, transient)
- mRNA read out by ribosome (rRNA)
 - Ribosomes contain their own type of RNA
 - Amino acids + RNA (tRNA, small)
- Ribosome synthesizes proteins (incoming tRNA)
 - Forges peptide bonds between amino acids
 - tRNA liberated, captures new amino acids
 - 10-20 amino acids/second

RNA world before DNA/protein

- Nucleotides in RNA easier made
- RNA evolved to DNA (greater stability)
- No scenario for protein replication w/o RNA
- Natural selection outcompeted DNA+protein

On Friday

- RNA world (RGS pp.35)
 - -Last common ancestor(LUCA)
- Top-down approach
 - -RGS pp. 37-41
 - −BS pp. 172-176