May 4, 2016, Revision: 1.9

1 Planck function

The Planck function is given by

$$B_{\nu}(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k_{\rm B}T} - 1}$$
 (1)

where $k_{\rm B} \approx 1.381 \times 10^{-23} \, {\rm J \, K^{-1}}$ is the Boltzmann constant, $h \approx 6.626 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}$ is the Planck constant, and $c \approx 2.998 \times 10^8 \, \mathrm{m \, s^{-1}}$ is the speed of

The Planck function is defined such that $\int_{4\pi} \int_0^\infty B_\nu \, \mathrm{d}\nu \, \mathrm{d}\Omega = \sigma_{\rm SB} T^4$, where

$$\sigma_{\rm SB} = \frac{2k_{\rm B}^4 \pi^5}{15c^2 h^3} \approx 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}}$$
 (2)

is the Stefan-Boltzmann constant. $B_{\nu}(\nu,T)$, one can also define $B_{\lambda}(\lambda,T)$, which is defined analogously such that $\int B_{\lambda} d\lambda = \sigma_{SB} T^4$. Since $B_{\lambda} d\lambda = -B_{\nu} d\nu$, we have $B_{\lambda} = B_{\nu} d\nu/d\lambda$ (the minus sign arises because the integration boundaries have been interchanged. Using $\nu = c/\lambda$, we have $-d\nu/d\lambda = c/\lambda^2$.

Figure 1: Planck spectrum I_{λ} (black line), compared with the measured intensity at several positions near disk center (red lines) and the measured intensity assuming that it was I_{ν} which was therefore scaled by a c/λ^2 factor (blue lines).

In Fig. 1 we plot the resulting equilibrium in-

of the Sun at disk center. Since we are not sure whether the SBO spectrometer really measures I_{λ} , we compare with the resulting plot assuming that it really measured I_{ν} , which would then need to be converted to I_{λ} with a c/λ^2 factor.

2 Center-to-limb variation

The intensity was measured from limb to limb as a function of linear position x on the solar disk. This linear position was translated into a radius r = x x_0 , where x_0 is determined such that the curves for $I_{\lambda}(x=r)$ collapse onto those for $I_{\lambda}(x=-r)$. We then translate the r dependence into a dependence on $\mu = \cos \theta$ through

$$\mu = \sqrt{1 - r^2/R^2},\tag{3}$$

where R is the radius of the projected solar disk. There is uncertainty in the values of R, which introduces considerable variations in the final form of $I_{\lambda}(\mu)$. By default, we assume $R = R_0$, where $R_0 = (x_{max} - x_{min})/2$ is the range covered between the first and the last measurements. The actual value of R is probably slightly larger than R_0 .

Figure 3 shows the resulting function of $I_{\lambda}(\mu)$ for three values of λ . The decline with increasing distance from the disk center (smaller values of μ) is slower for red colors ($\lambda = 700 \,\mathrm{nm}$) than for blue ones ($\lambda = 420 \,\mathrm{nm}$).

In Figs. 4–5 we show the resulting profiles of $I_{\lambda}(\mu)$ for $R = 1.05 \times R_0$ and $R = 1.1 \times R_0$, respectively. Nevertheless, in all cases the relative ordering of the lines for different wavelengths is the same.

Radius of the Sun: 136 windings.

3 Fit coefficients

Following early work of Pierce & Slaughter (1977), we first plot the intensity dependence as a function tensity $I_{\lambda} = B_{\lambda}$ and compare with measurements of $\xi = \cos \mu$ and then determine a quadric fit of the

Figure 2: Raw data and figuring our the right values of the central point x_0 and the radius R.

Figure 3: Center-to-limb variation for run Rachel_Brandon_161310_trial_6_27parts at $\lambda = 700\,\mathrm{nm}$ (red line), $\lambda = 500\,\mathrm{nm}$ (green line), and $\lambda = 420\,\mathrm{nm}$ (blue line).

form

$$I/I_0 = a + b\xi + c\xi^2. (4)$$

1.0 Figure 4: Same as Fig. 3, but assuming $R = 1.05 \times R_0$.

Figure 5: Same as Fig. 3, but assuming $R=1.1\times R_0$.

Figure 6: Comparison of the intensities for $\lambda = 500\,\mathrm{nm}$ for three values of R/R_0 .

References

Pierce, A. K., & Slaughter, C. D. 1977, Solar Phys., 51, 25 41Solar limb darkening. I - At wavelengths of 3033-7297

Table 1: Comparison of fit coefficients for Trial 3 of Max and those of Pierce & Slaughter (1977). These data are also plotted in Fig. 7.

Max						PS77		
λ	a	b	c	b/a	c/a	λ	b/a	c/a
405.6	0.978	0.765	0.169	0.783	0.173	407	0.629	0.129
441.9	0.975	0.621	0.115	0.637	0.118	444	0.535	0.089
467.6	0.977	0.567	0.096	0.581	0.099	468	0.525	0.094
493.7	0.983	0.525	0.081	0.535	0.083	493	0.504	0.092
538.2	0.982	0.481	0.066	0.490	0.068	534	0.478	0.089
610.4	0.982	0.418	0.045	0.426	0.046	610	0.413	0.071
638.7	0.980	0.399	0.038	0.407	0.039	641	0.385	0.062
654.9	0.985	0.338	0.016	0.343	0.017	660	0.360	0.052
702.3	0.977	0.380	0.033	0.389	0.033	701	0.353	0.056
750.5	0.975	0.371	0.029	0.380	0.029	730	0.343	0.053

Figure 7: Comparison of the fit coefficients b and c as a function of λ from Pierce & Slaughter (1977) (solid lines) and Trial 3 of Max (dashed).

 $$Header: /var/cvs/brandenb/tex/teach/ASTR_3760/c2limb/notes.tex, v 1.9 2016/05/05 04:38:22 brandenb Exp \$ for the context of the context of$