ASTR-3760: Solar and Space Physics ............. Problem SetEY (Due Mon., January 25, 2016)

Please try to be neat when writing up answers. In cases where calcslat®nalled for, please show all of
the intermediate steps, including any approximations you choose to makeyaskledrthes you may need
to illustrate what's what. Be careful to properly evaluate units and signtfioggures. Calculations given

without ‘showing the work’ will receive zero credit, even if the final a®s is correct.

1. Kindex and relation to B field. When googling for Kp index, | came across the following site:
http://ww. spaceweat herlive. com en/ hel p/ t he- ki runa- nagnet onet er
It relates the K index (from 0 to 9) to ranges of the magnetic fiBlgl{andBmax) in NT; see below.

Interpreting the K-index based on values from Kiruna

De K-index is just like the Kp-index, a geomagnetic storm index with a logarithmic scale from 1 to 9 but as measured
by a single station and not from multiple stations combined. Based on the deflection from the Kiruna magnetometer we
can try to determine the K-indice for that specific station. For the station at Kiruna, we do this with the help of the table
below. Be aware that, due to it's location, this magnetometer is only be helpful for observers from Europe.

K-index Deflection in nanoTesla Storm type

0 €-15 Quiet conditions

1 15 -30 Quiet conditions

2 30 - 60 Quiet conditions

3 60 -120 Unsettled geomagnetic conditions
4 120 - 210 Active geomagnetic conditions

5 210 - 360 G1 - Minor geomagnetic storm

6 360 - 600 G2 - Moderate geomagnetic storm
7 600 - 990 G3 - Strong geomagnetic storm

8 990 - 1500 G4 - Severe geomagnetic storm

9 1500 and more G5 - Extreme geomagnetic storm

(a) PlotBmin andBmax versus Kp (either with the computer or by hand) and check that K doesdnde
grow logarithmically, and thuBin andBmax grow exponentially with Kp.

(b) Try to describe the data with the formula

B = Boexp(Kp/Kpg)

and give the valueBy and Kp,. (Don't forget the give units, when appropriate and necessary.)

(c) To see the logarithmic behavior of Kp, it is more natural to plot Kp veBsysand versuBmax (in
the same graph). Check that
Kp = KpoIn(B/Bo)


http://www.spaceweatherlive.com/en/help/the-kiruna-magnetometer

(a) To show thaBmin andBmax grow exponentially with Kp, it is best to plot &}, and logBmax versus
Kp. This is shown in Fig. 1. One can now overplot Bg logBgexp(Kp/Kp,) for some trial values
of Bp and Kp,. Alternatively, one can use a semi-logarithmic plot; see [Fig. 3, where Balgt(in
blue) and versuBmnax (in red) vs. Kp on the left and Kp vers@s, (in blue) and versuByax (in red)

romthe right. The straight lines denote approximate fits discussed below.
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Figure 1: lo®Bmin and logBmax versus Kp (left) and Kp versus I@yin and loBmax (right). (One is
essentially just the mirror image of the other.)
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Figure 2: Kp index

(b) After some fiddling, | found that
B = Boexp(Kp/Kpo)
with Bp = 15nT and Kg = 1.7 fits the blue and red lines reasonably well (at least in the range 3
Kp <6).
(c) Ko = 3.9, butKy = 4.0 is also good and even slightly better.



2. Vector & scalar fields. Consider the following vector function in Cartesian space:

F = (y+2xy)8 + (x+X* +3y°2)8y + (2y°2)8,

(a) Calculate the divergence and curlFof
(b) CanF be an electric field? If so, under what circumstances?
(c) CanF be a magnetic field? If so, under what circumstances?

(d) Extra credit:Using a table of vector identities, it is possible for you to determine how the wecto
field F was “generated” from a simpler scalar functiofx,y, 2). Figure out how that was done, and
calculate the functional form af(x, y, 2).

(a) The divergence is given by:
V-F=2y+6yZ +2y3 = 2y(1+32+y?) .
The curl ofF is zero! If you didn’t get that answer, see the following breakdown:

6y°z-6y°z = 0
0-0=0
1+2)-(1+2x) =0

(V x F)x = (0F,/dy) - (0Fy/92)
(V x F)y = (0F/02) = (0F,/0X)
(V % F); = (0Fy/9X) = (9F«/dy)

(b) Yes. Its divergence describes the distribution of charge demsityspace. Its curl is zero, which from
Faraday’s law means that the local magnetic fglchust be constant in time (i.€2B /0t = 0).

(c) No, because its divergence is not zero. A magnetic field must ®bdy= 0.

(d) We know thatV x F =0, and there is a vector identity that says the curl of a gradient is alstiddiy

zero:
VxVe¢=0.

Thus, the vectoF must be expressible as the gradient of a scalar “potential” funeieyy, z). Using
your knowledge of derivatives, it's possible to work backwards ftbenthree components &fto see
that the potential must have been

—p(X,Y,2) = xy+Xy+y* 7.

I've used here a minus sign to conform with the usual convention in whicleléetric field is the
negative gradient ofe, i.e.,E =—-V ¢. Thus,E in the direction in whichp becomes most negative.

3. A Not-So-Ordinary Differential Equation. Consider a one-dimensional “slab” of gas that staris=a0
and ends ax =D, and is surrounded by empty space. A ray of light with intenkjtyits the slab ak=0
and shines through it parallel to tlkexis. Inside the slab, the intensity obeys

dl

ax = «a(S-1)

wherea andSare constants.
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Figure 3: Electric field vectors and contours of constant electrostatiofpate
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Figure 4. Electrostatic potential, where dotted lines denote negative vdlgesAs expectedE points in
the direction in whichy becomes most negative (e.g. the upper left and right corners.

(a) Solve this equation fdi(x) at all points betweer =0 andx = D.
(b) Define the quantity = aD. Give an approximate solution for the “emergent intensifyJ) under



the three limiting cases:

o T 1.
e 7> 1andS>> .
e 7> 1andS<« .
(c) Each of the three above cases matches with one of the following thyseghanalogies. Which do
you think corresponds to which, and why?

e Shining a flashlight through a piece of dark smoky quartz.
e Shining a flashlight through the bright flame of a welder’s torch.
e Shining a flashlight through a glass window pane.

Hint: The quantityr can be thought of as the “optical depth” or opaqueness of the slab—eiveefficiently

does the gas absorb (or otherwise eliminate) the incoming beam. The qu&istay'source function” that
describes how the gas in the slab generates its own light.

(a) We can sort of separate the variables to get
di
ax +al =aS

but we can’t quite integrate this equation yet unless we introduce a sat@alégrating factoe™*
and substitute

[(X) =€ ().
Inserting this gives

i
—al +€ O‘X$(+oz| =aS

where thex!l cancels, so we have

di

e =as 1)
or
& =ase @

which can now be solved by separation of variables, i.e.
~ ~ X /
I —Iozas/ e™ dx,
0
and becaus¢ e**dx = o 1™ +const, we have
I'=1p+S(e™*-1).
We now express this solution in termsldfy substituting = €**I, so

e = Clp+S(e™-1),



wheree®*01, = lo, and after multiplying bye™X
[(X) =lpg *+S(1-€Y),
which is the solution! Several solutions are shown in Figs. 5 and 6.

As noted by some of you, in this particular case, siBceconst, one can solve this equation also
directly by separation of variables. Thus, we write

dl
Q = - dX.
SinceS= const, we can substitutd by d(l —9), but that means that the lower and upper boundary
values ardg—Sandl - S, respectively, and the integrating variable will now be calledS. Thus, we

have I-S / X
Sd('-9 /
=—-a [ dX.
/|O_S I,_S 0
This gives
In(l =9 =In(lg—9) = —ax,
or

In(l=-9 =In(lp—9 —ax.
Exponentiating this gives
I -S=(lo-9e™,

which can also be written in the form
| =lpe ™ +S(1-e).

which is indeed the same as the solution via integrating factor.
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Figure 5: Dependence dfax)/lp on ax for S/Ip=0 (solid), 0.5 (dotted), 1 (dashed), 2 (dash-dotted), 5
(dash-triple-dotted). The plot on the right shows a comparison with theozippation expk) ~ 1-x (ed
lines) over a shorter range0ax < 0.4
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Figure 6: Similar to previous figure, but now in semi-logarithmic representéio8/l,=0 (solid), 0.01
(dotted), 0.1 (dashed), 1 (dash-dotted), 10 (dash-triple-dotted )1 @M (long dashed).

(b) At x=D, the solution is given by
I(D) = lpe 7" +S(1-€7) .
ForT <« 1, we can use the series expansion for the exponential function with aangathent,
e l-7+--
(where we ignore tiny quantities like?, 73, etc). Thus, in this limit,
(D) ~ lp(1-7) +7S

and if we tookr — 0, this leaves only

I(D) ~ lg.
ForT > 1, thee™™ term goes to zero extremely rapidly, and all that is left is

I(D) ~ S

and itdoesn't matter whetherS < lg or S>> lg, since in this limit the intensity at = D completely
“forgets” about the boundary conditionat O.

(c) The glass window is the “optically thin” caseo# 1, since the intensity that comes out is approximately
equal to the intensitiy that goes in.

The other two cases correspond to the “optically thick” limit-af> 1. The intensity that comes out
is dominated solely by the source functi§ni.e., by the properties of the slab itself. The dark smoky
guartz absorbs the incoming beam but doesn’t generate much light ofntslows the emergent beam
is less intense than what went I8« lp). For the welder’s torch, the initial beam is swamped by the
much brighter intrinsic emission from within the sl&®% o).

4. Electromagnetic Energy Conservation. Use Maxwell’s equations, for a vacuum environment (i.e.,
D = ¢oE andB = pugH), to show that

aat(UE-FUB)'l'V'S: -E-J

7



where 5 5
E B 1
F" =BT st Exp) .

U = b b
T2 ® 7 200 110

Hint: The online version of the “useful formulae” document contains a newovédentity that didn’'t get
included in time for the printed handouts on the first day. If vecfo& B depend on timég, then the chain
rule for the dot product is given by

oB  0A

(A B)=A- o+ B

There are several ways to go about it, but | think the most straightfdrisdo start by expanding out

€ 0 8E 0B

(UE UB)_**(‘ ‘) 2 o Ot (’B’) ot NOB ot

which makes use of the vector identity above and the fact&jat= A - A.
Solving Ampere’s law and Faraday'’s law for the time derivativeE ahdB allows us to substitute in to get

%(UE+UB) = i[E-(V><B)—B-(V><E)]—E~J.
Ko

This is almost the final expression. The quantity in square brackets csimpkfied, using a vector chain
rule identity, toV - (B x E). We can switch the order of vectors in the cross product if we charggsigin,

so this quantity is also equal tV - (E x B). Some algebra is all that is needed to rearrange everything into
the desired form.




