ASTR-3760: Solar and Space Physics ............. Problem SetBY (Due Mon., February 8, 2016)

Please try to be neat when writing up answers. In cases where calcslat®nalled for, please show all of
the intermediate steps, including any approximations you choose to makeyaskieaches you may need
to illustrate what's what. Be careful to properly evaluate units and signiffagures. Calculations given

without ‘showing the work’ will receive zero credit, even if the final ees is correct.

1. Computing source function from observed center to limb variation. We use the equation of radiation
transport to infer the depth dependence of the source function froobderved center to limb variation.

We use the gray approximation and write the equation of radiation transgbg form
n-VI=-kp(l -9
wherel(z A) is the intensity as a function of heighind directiom, x is the opacity per unit masg,is the
density of the gas, andlis the source function.
(a) Derive the equation of radiation transport in the form
dl _
'udT B
where i = cod is the cosine of the anglé between the direction of the ray and the vertical
direction, andr is the optical depth. Thus,is now a function ofr and .

(b) Verify that

I-S 1)

(7.0 = oo, & [ sy

obeys Eq. (1), wherHo, 1) is the intensity at some arbitrarily chosen reference value of the optical
depthry.
(c) Putr =0 andrg = oo, and show that

16)= [ See mdr

wherel (1) is the intensity at the position of the observer, who is located=a, sol (1) is the same
asl (0, 1). This equation is an integral equation that can be inverted to o8tajrior a given profile

of I ().
(d) Drop the prime in the equation above and show that

/OOOTe_T/“dT/,u = u?
and -
/0 e/ dr /= 248
(e) Insert forS(r) the Taylor expansion
Sr)=S+SiT+397°

whereSy, S;, andS,, are suitable coefficients and compuge).
(f) Computel (1) for

3
+§T. (2)
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(g) Use the measured and tabulated valudg;0fto computeS(r).

po ()
1 1.0
2/3 0.8
1/3 05

(h) Describe how this new functio®(7) obtained from the tabulated values is different from that given
by Eq. (2). Plot (or sketch) bott{y) andS(7).
(i) Instead of performing an expansion around 0 as under (e), expand aroune 7, = 1, using

S(T)=S+Si(T-7) + 1S (T -7, 3)

with new coefficients, S;, andS,, and repeat steps (f)—(h).

(a) In spherical coordinates, the unit vechos given by

sinf cosp
n= (sin@sin¢>) .
cosy
However, sincé =1(z A), VI has only &z component, i.e.,
sinf cosp 0 ol dl
n-vi= (sin&sinqﬁ) . ( 0 ) =cos€a— :cosed—,
cosd 0/0z z z

where we have used the fact thadlepends only on the coordinate, and there is no differentiation
with respect tqu. Since co# = ;. we have

dl
HEZ =-rp(l =9

We can now use the definition of optial depth, = —«xpdzto obtain

(b) We verify this equation by insertirdj /dr, so we differentiate the given expression:

d 1 1 o /
e = Z1(ro, p) & OV H — Zg() e T/ 1 +/ () e /e dr’ /2
T M H T

where the differentiation of the integral consisted of two parts: “undothg”integration (noting
the variable integration boundary is here the lower one) and the diffetientiaf the integrand.
Multiplying by u yields

par = Mo oS+ [ syt g
T T

where sum of the first and the last term on the rhs equalsd so we have

di _

—=|-S
'udT



(c) For g = oo, the first exponential factor vanishes, i.€{°~)/# = 0 and so, putting alse = 0 yields
directly

10.1) = /O T sryem rdr

The rest is just renamindO, ) into justl (w).
(d) Let us begin with

o0 )
/ e_T/“d7'=—,ue_T/“’ =
0 0
Next, using integration by parts, we have
[e.e] o0
| etz e [ L e dr
o YT Ty o T
v % u’ %

The first term vanishes on both boundaries, and the second termgtirass the previous integral,
which was alsq:, so we obtain.?,

o0
/ T @ dr = 42
0 M v
Vv

Finally,

[e.e] o0
| e mdr= g2 e - [ 20 (e dr
0 \J/T \l:-/\ v ; O Y\ v ;

Again, the first term vanishes on both boundaries, and the second tezsugtimes the previous
integral, which wag:?, so we obtain 22,

(e) Inserting the integrals above into the expression in (c), we have
(1) = So+ S+ Sopi?
(f) We can just use (f) and see tiat=2/5,S = 3/5, andS; = 0, so
(1) = % + gu'
(g) We have 3 measurements, each one resulting in one equation with 3 urgknow
1() = S0+ Sip+Sop?

so for the 3 data valud$1), | (12), andl (ug) with 1 =1, up = 2/3, anduz = 1/3, we have 3 equations
that we arrange immediately in matrix form, i.e.,

I (1) 1 o pf\ (S
('(Mz)) = (1 2 #5) (SII.)
[ (u3) 1 us 13/ \S

In our case withuy =1, up = 2/3, andus = 1/3, the matrix is

1 1 1
(1 2/3 4/9)
1 1/3 1/9



which we invert,
1 1 1)\71
(1 2/3 4/9)
1 1/3 1/9
so the solution for the 3 unknowns is

S 1 -3 3 [ (p2)
(sl) . (-9/2 12 /) (.(M))
S 9/2 -9 92 [ (123)

Inserting now our measurements, we obtain

S 1 -3 3 1 1/10 0.1
(sl) = (—9/2 12 —15/2) (0.8) = (27/20) = ( 1.35)
S 9/2 -9 9/2 ) \05 -9/20 -0.45

(h) The first plot below shows the original data points together With = S+ Sy + Sp?. Note that
1 =1 (disk center) is here to the left, apd= 0 (limb) is to the right. The second plot sho®g) =

S+SiT+iST2
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The solution given by Eq. (2) matches the new oneatl/2.
(i) We start with

5(7-)=So+81(7-—7-*)+%82(7—7-*)2, ()
S(T):SO"‘SlT_SlT**'%Sz(TZ—ZTT*+7'*2)2, (5)
and rewrite
S7) = [S-Sim + 39T+ [S - Sn] T+ 35T 6)
S S

andéz =$S,. Again, we have 3 equations that we can write in matrix form, so-for1, we have

S 1 -1 1/2\ /S
6196
S 0 0 1/\S

1 -1 /2t /1 1 12
0 1 -1] =(0 1 1
0 0 1 00 1
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The inverse is given by



The coefficients turn out to & = 1.225,5; = 0.9, andS; = -0.45, but the functional form of(r) is
the same as for, = 0.

2. Thin magnetic flux tubes.We'd like to explore the real meaning of the most trivial-looking of Maxwell’s
equations¥ -B = 0.

Consider a bundle of magnetic field lines constrained to follow a sausagshiéee oriented mostly along
thez axis:

We’'ll use cylindrical coordinatesr,(¢,2) to describe spatial variations B, and assume axial symmetry
around thez axis (i.e., no variations ig, andB, = 0).

(a) In the zoomed-in region betweenandz,, assume that

682 . . ABZ BZZ - BZI.
——= isaconstant given b = .
0z g y Az -7

Integrate thév - B = 0 equation to show that

B =Cr

betweenz; andz, and solve forC in terms of the other variables of this problem. Describe any
assumptions or boundary conditions that you had to use.

(b) Note that, along the outer edge of the tube, the veBtpoints along the direction of the tube’s
geometric outline. Considering ongmallrelative changes in betweenz; andz,, use everything
given so far to show that the change in cross-sectional &rear(?) from z; to 2 is given by

8 o8,
A Ba

Hint: The binomial expansion for the quantityf{Ar /r1)]?, whereAr = (rp —r1) < r, might be
useful to use at some point.

(c) Lastly, assume that allX” changes are infinitesimally small, in comparison to the values of the
guantities at, and show that
A(2)B,(2) = constant

i.e., thatmagnetic flux is conservedong a thin flux tube.
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() In cylindrical coordinates with symmetry properties as describedeaRo\B = 0 is given by

10 0B,
_ B + < =
ror (rBr) oz 0
and if9B,/0zis a constant, then this reduces to an ordinary differential equation, wid@aan write
as
dy _ AB, :
ar - r(Az) where y=rB; .

This equation is separable and can be integrated,
3 AB;,
/dy = (AZ)/rdr
<ABZ) 2
Az 2
Dividing both sides by gives one term that’s proportional tqwhich is what the problem is asking
for) plus another term that depends on the integration conétaie can argue that must be set to

zero, since it's clear from the cartoon tl&tshould go to zero along the axis of the flux tube= Q).
Thus,

y =B,

rAB, 1AB,

B =

= ie., -= .

2 Az 2 Az

(b) If the magnetic field between andz is oriented like it is in the figure, then the magnetic field vector
is parallel to the “displacement vector” that points from coordinatggj to (r»,z2). In other words,
the components are proportional to one another as follows:

Brl _ AI’

By Az

whereAr = (rp—r1) andAz= (2 —z). We'll use this in a bit. Next, we can begin writing the change
in cross-sectional area as

AA = Ap=A; = (x13) = (nr?) = nr? [(Z)z_ ] = 712 l(r1+Ar>2_ ]

ri

or, in other words,

2
oA <1+Ar> -1
A r

For small relative changeg&\¢ < r1), the binomial expansion gives
Ar\? Ar
(1+r> ~ 1+ Zr— + {smaller term¥
1 1

and

~

AA N 2Ar 2 (BrlAz

— — ) (from the above proportionality relation) .
Al le

ri _rl

But, from part (a), we know that




and plugging that in gives us the desired answer,

oA _as,
Ar Ba

(c) If the “deltas” are infinitesimally small, they can be changed to derivstive.,
dA _ _dB
A B,
Since we're talking about changes mainly alongzlais, the above is equivalent to
1dA__1d8
Adz B, dz’

We can show this is exactly what one would geAB, = constant, since that would be the same as
saying

d

5 [A@B2] = 0
dB, _ dA _
AE + BZd—Z =0

and if we divide each term on the left-hand sideAR,, we get the boxed equation above.

3. Magnetic flux tubes in the Sun’s atmosphereConsider a small piece of the solar surface, in which thin
flux tubes with strond3 are peppered through larger regions of weak/negligible

Ps(2)

pr(z)

Let’'s assume the entire region shown above is isothermal (i.e., cofistardughout), and thedependence
of densityp obeys the hydrostatic equilibrium derived in class,

ke T
g

where the density at the base<0) inside the tubeg t does not necessarily equal the base density in the
surrounding$p s.

(2 = po exp(—;) where H =



(a) If the plasma inside the tube is in total pressure balance with the plasmeedtitsidibe, show that
thez dependence of magnetic field strengtmside the tube obeys

B(2 = By exp(—é)

and solve foBy andK in terms of the other properties of the system.

(b) Using the principle of magnetic flux conservation from the previoudblpro, note that ifB(2)
decreases with increasing height, then the cross-sectional area ob&hW&(#) must increase. |If
the tubes occupy 1% of the solar surface at the lower boundar), then at what height will they
fill the entire surface? Solve for this “merging height” both in terms of the othgables and also
as an actual number (in units of km) for the real solar casesf5000 K andu ~ 1.3.

(a) The total pressure is given by

kg T B2
Prot = Pgas"' I:)mag = P +

Py 20

The interior of the tube has both gas and magnetic pressure. The glimgsihave weak or negligible
magnetic field, so that allows us to assume that the surroundingohbmgas pressure. Thus, if the
total pressure is equal at a given heigir the two regions, then

I:)tot,T = Ptot,S
prkeT N B? _ psksT
Py 2u0 Sy

and thus, we can solve for

B2 _ (ps—pm)keT _ {(PO,S_PO,T)kBT} <_Z>
g = exp(—— | .
210 Y Y H

Thus, we can solve for
z
B(2) = Boexp| ——
@ = Boexp(~ )

where

K=2H.
HIMH

(b) When magnetic flux is conserved, the last problem told us that the @r8¢@)A(z) should remain
constant. Thus,

B. = \/ 2110(po,s— po.1)ke T
0 =

BoAo = BmAm
where subscript ‘0’ refers to the photospheric lower boundarysabdcript m' refers to the merging
height at which the flux tubes expand to fill the volume.

We don’t need absolute values for the arégandAn,. We know thatdg is 1% of the solar surface,
andAn, is essentially 100% of the solar surface, so we can write the above forsalato...

B~ A _ 01

Bo Anm



We also know from part (a) that the magnetic field stref@ytfat some height,, above the photosphere

can be written as
Bm Zm

Bm = Bo exp( 2H) ie., Bo 0.01 exp( 2H>
which can be solved for
Zm = —2H In(0.01)

which must be a positive number, since Il0) =-4.605. Plugging in the numbers given, the scale
heightH =116 km. Thus,
Zm = 1067 km

which is in the middle of the chromosphere.




