
ASTR-3760: Solar and Space Physics . . . . . . . . . . . . . Problem Set 2KEY (Due Mon., February 8, 2016)

Please try to be neat when writing up answers. In cases where calculations are called for, please show all of
the intermediate steps, including any approximations you choose to make and any sketches you may need
to illustrate what’s what. Be careful to properly evaluate units and significant figures. Calculations given
without ‘showing the work’ will receive zero credit, even if the final answer is correct.

1. Computing source function from observed center to limb variation. We use the equation of radiation
transport to infer the depth dependence of the source function from theobserved center to limb variation.

We use the gray approximation and write the equation of radiation transport inthe form

n̂ ·∇I = −κρ(I − S)

whereI (z, n̂) is the intensity as a function of heightzand direction̂n, κ is the opacity per unit mass,ρ is the
density of the gas, andS is the source function.

(a) Derive the equation of radiation transport in the form

µ
dI
dτ

= I − S (1)

whereµ = cosθ is the cosine of the angleθ between the direction of the raŷn and the vertical
direction, andτ is the optical depth. Thus,I is now a function ofτ andµ.

(b) Verify that

I (τ ,µ) = I (τ0,µ)e−(τ0−τ )/µ +
∫ τ0

τ
S(τ ′)e−(τ ′−τ )/µ dτ ′/µ

obeys Eq. (1), whereI (τ0,µ) is the intensity at some arbitrarily chosen reference value of the optical
depthτ0.

(c) Putτ = 0 andτ0 = ∞, and show that

I (µ) =
∫

∞

0
S(τ ′)e−τ ′/µ dτ ′/µ

whereI (µ) is the intensity at the position of the observer, who is located atτ = 0, soI (µ) is the same
asI (0,µ). This equation is an integral equation that can be inverted to obtainS(τ ) for a given profile
of I (µ).

(d) Drop the prime in the equation above and show that
∫

∞

0
τ e−τ/µ dτ/µ = µ2

and ∫
∞

0
τ2e−τ/µ dτ/µ = 2µ3

(e) Insert forS(τ ) the Taylor expansion

S(τ ) = S0 + S1τ + 1
2S2τ

2

whereS0, S1, andS2, are suitable coefficients and computeI (µ).

(f) ComputeI (µ) for

S(τ ) =
2
5

+
3
5
τ . (2)
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(g) Use the measured and tabulated values ofI (µ) to computeS(τ ).
µ I (µ)
1 1.0

2/3 0.8
1/3 0.5

(h) Describe how this new functionS(τ ) obtained from the tabulated values is different from that given
by Eq. (2). Plot (or sketch) bothI (µ) andS(τ ).

(i) Instead of performing an expansion aroundτ = 0 as under (e), expand aroundτ = τ∗ = 1, using

S(τ ) = S0 + S1 (τ − τ∗) + 1
2S2 (τ − τ∗)

2, (3)

with new coefficientsS0, S1, andS2, and repeat steps (f)–(h).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In spherical coordinates, the unit vectorn̂ is given by

n̂ =




sinθcosφ
sinθsinφ

cosθ


 .

However, sinceI = I (z, n̂), ∇I has only az component, i.e.,

n̂ ·∇I =




sinθcosφ
sinθsinφ

cosθ


 ·




0
0

∂/∂z


 = cosθ

∂I
∂z

= cosθ
dI
dz

,

where we have used the fact thatI depends only on thez coordinate, and there is no differentiation
with respect toµ. Since cosθ = µ we have

µ
dI
dz

= −κρ(I − S)

We can now use the definition of optial depth,dτ = −κρdzto obtain

µ
dI
dτ

= I − S.

(b) We verify this equation by insertingdI/dτ , so we differentiate the given expression:

dI
dτ

=
1
µ

I (τ0,µ)e−(τ0−τ )/µ −
1
µ

S(τ )e−(τ−τ )/µ +
∫ τ0

τ
S(τ ′)e−(τ ′−τ )/µ dτ ′/µ2

where the differentiation of the integral consisted of two parts: “undoing”the integration (noting
the variable integration boundary is here the lower one) and the differentiation of the integrand.
Multiplying by µ yields

µ
dI
dτ

= I (τ0,µ)e−(τ0−τ )/µ − S(τ ) +
∫ τ0

τ
S(τ ′)e−(τ ′−τ )/µ dτ ′/µ

where sum of the first and the last term on the rhs equalsI , and so we have

µ
dI
dτ

= I − S
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(c) For τ0 = ∞, the first exponential factor vanishes, i.e.,e−(τ0−τ )/µ = 0 and so, putting alsoτ = 0 yields
directly

I (0,µ) =
∫

∞

0
S(τ ′)e−τ ′/µ dτ ′/µ

The rest is just renamingI (0,µ) into justI (µ).

(d) Let us begin with ∫
∞

0
e−τ/µ dτ = − µe−τ/µ

∣∣∣
∞

0
= µ

Next, using integration by parts, we have
∫

∞

0
τ︸︷︷︸
u

e−τ/µ
︸ ︷︷ ︸

v′

dτ = τ︸︷︷︸
u

(−µ)e−τ/µ

︸ ︷︷ ︸
v

|∞0 −
∫

∞

0
1︸︷︷︸
u′

(−µ)e−τ/µ

︸ ︷︷ ︸
v

dτ

The first term vanishes on both boundaries, and the second term givesµ times the previous integral,
which was alsoµ, so we obtainµ2,

∫
∞

0
τ︸︷︷︸
u

e−τ/µ
︸ ︷︷ ︸

v′

dτ = µ2.

Finally, ∫
∞

0
τ2

︸︷︷︸
u

e−τ/µ
︸ ︷︷ ︸

v′

dτ = τ2
︸︷︷︸

u

(−µ)e−τ/µ

︸ ︷︷ ︸
v

|∞0 −
∫

∞

0
2τ︸︷︷︸
u′

(−µ)e−τ/µ

︸ ︷︷ ︸
v

dτ

Again, the first term vanishes on both boundaries, and the second term gives µ times the previous
integral, which wasµ2, so we obtain 2µ3,

(e) Inserting the integrals above into the expression in (c), we have

I (µ) = S0 + S1µ+ S2µ
2

(f) We can just use (f) and see thatS0 = 2/5, S1 = 3/5, andS2 = 0, so

I (µ) =
2
5

+
3
5
µ.

(g) We have 3 measurements, each one resulting in one equation with 3 unknowns,

I (µ) = S0 + S1µ+ S2µ
2

so for the 3 data valuesI (µ1), I (µ2), andI (µ3) with µ1 = 1,µ2 = 2/3, andµ3 = 1/3, we have 3 equations
that we arrange immediately in matrix form, i.e.,




I (µ1)
I (µ2)
I (µ3)


 =




1 µ1 µ2
1

1 µ2 µ2
2

1 µ3 µ2
3







S0

S1

S2


 .

In our case withµ1 = 1,µ2 = 2/3, andµ3 = 1/3, the matrix is




1 1 1
1 2/3 4/9
1 1/3 1/9



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which we invert, 


1 1 1
1 2/3 4/9
1 1/3 1/9




−1

=




1 −3 3
−9/2 12 −15/2
9/2 −9 9/2




so the solution for the 3 unknowns is



S0

S1

S2


 =




1 −3 3
−9/2 12 −15/2
9/2 −9 9/2







I (µ1)
I (µ2)
I (µ3)




Inserting now our measurements, we obtain



S0

S1

S2


 =




1 −3 3
−9/2 12 −15/2
9/2 −9 9/2







1
0.8
0.5


 =




1/10
27/20
−9/20


 =




0.1
1.35

−0.45




(h) The first plot below shows the original data points together withI (µ) = S0 + S1µ + S2µ
2. Note that

µ = 1 (disk center) is here to the left, andµ = 0 (limb) is to the right. The second plot showsS(τ ) =
S0 + S1τ + 1

2S2τ
2.

The solution given by Eq. (2) matches the new one atτ = 1/2.

(i) We start with
S(τ ) = S0 + S1 (τ − τ∗) + 1

2S2 (τ − τ∗)
2, (4)

S(τ ) = S0 + S1τ − S1τ∗ + 1
2S2 (τ2 − 2ττ∗ + τ2

∗
)2, (5)

and rewrite
S(τ ) = [S0 − S1τ∗ + 1

2S2τ2
∗
]

︸ ︷︷ ︸
S̃0

+ [S1 − S2τ∗]︸ ︷︷ ︸
S̃1

τ + 1
2S2τ2, (6)

andS̃2 = S2. Again, we have 3 equations that we can write in matrix form, so forτ∗ = 1, we have



S̃0

S̃1

S̃2


 =




1 −1 1/2
0 1 −1
0 0 1







S0

S1

S2


 .

The inverse is given by 


1 −1 1/2
0 1 −1
0 0 1




−1

=




1 1 1/2
0 1 1
0 0 1



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The coefficients turn out to bẽS0 = 1.225,S̃1 = 0.9, andS̃2 = −0.45, but the functional form ofS(τ ) is
the same as forτ∗ = 0.

2. Thin magnetic flux tubes.We’d like to explore the real meaning of the most trivial-looking of Maxwell’s
equations:∇·B = 0.

Consider a bundle of magnetic field lines constrained to follow a sausage-likeshape oriented mostly along
thez axis:

We’ll use cylindrical coordinates (r,φ,z) to describe spatial variations inB, and assume axial symmetry
around thez axis (i.e., no variations inφ, andBφ = 0).

(a) In the zoomed-in region betweenz1 andz2, assume that

∂Bz

∂z
is a constant given by

∆Bz

∆z
=

Bz2 − Bz1

z2 − z1
.

Integrate the∇·B = 0 equation to show that

Br = Cr

betweenz1 andz2, and solve forC in terms of the other variables of this problem. Describe any
assumptions or boundary conditions that you had to use.

(b) Note that, along the outer edge of the tube, the vectorB points along the direction of the tube’s
geometric outline. Considering onlysmall relative changes inr betweenz1 andz2, use everything
given so far to show that the change in cross-sectional area (A = πr2) from z1 to z2 is given by

∆A
A1

≈ −
∆Bz

Bz1
.

Hint: The binomial expansion for the quantity [1+ (∆r/r1)]2, where∆r = (r2 − r1) ≪ r1, might be
useful to use at some point.

(c) Lastly, assume that all “∆” changes are infinitesimally small, in comparison to the values of the
quantities atz1, and show that

A(z)Bz(z) = constant

i.e., thatmagnetic flux is conservedalong a thin flux tube.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In cylindrical coordinates with symmetry properties as described above,∇·B = 0 is given by

1
r

∂

∂r
(rBr ) +

∂Bz

∂z
= 0

and if∂Bz/∂z is a constant, then this reduces to an ordinary differential equation, whichwe can write
as

dy
dr

= − r
(

∆Bz

∆z

)
where y = rBr .

This equation is separable and can be integrated,
∫

dy = −
(

∆Bz

∆z

)∫
r dr

y = rBr = −
(

∆Bz

∆z

) [
r2

2
+ c̃

]

Dividing both sides byr gives one term that’s proportional tor (which is what the problem is asking
for) plus another term that depends on the integration constantc̃. We can argue that̃c must be set to
zero, since it’s clear from the cartoon thatBr should go to zero along the axis of the flux tube (r = 0).
Thus,

Br = −
r
2

∆Bz

∆z
i.e., C = −

1
2

∆Bz

∆z
.

(b) If the magnetic field betweenz1 andz2 is oriented like it is in the figure, then the magnetic field vector
is parallel to the “displacement vector” that points from coordinates (r1,z1) to (r2,z2). In other words,
the components are proportional to one another as follows:

Br1

Bz1
=

∆r
∆z

where∆r = (r2 − r1) and∆z= (z2 − z1). We’ll use this in a bit. Next, we can begin writing the change
in cross-sectional area as

∆A = A2 − A1 = (πr2
2) − (πr2

1) = πr2
1

[(
r2

r1

)2

− 1

]
= πr2

1

[(
r1 +∆r

r1

)2

− 1

]

or, in other words,
∆A
A1

=
(

1+
∆r
r1

)2

− 1 .

For small relative changes (∆r ≪ r1), the binomial expansion gives

(
1+

∆r
r1

)2

≈ 1 + 2
∆r
r1

+ {smaller terms}

and
∆A
A1

≈ 2
∆r
r1

=
2
r1

(
Br1∆z

Bz1

)
(from the above proportionality relation) .

But, from part (a), we know that

Br1 = −
r1

2
∆Bz

∆z
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and plugging that in gives us the desired answer,

∆A
A1

≈ −
∆Bz

Bz1
.

(c) If the “deltas” are infinitesimally small, they can be changed to derivatives; i.e.,

dA
A

= −
dBz

Bz
.

Since we’re talking about changes mainly along thez axis, the above is equivalent to

1
A

dA
dz

= −
1
Bz

dBz

dz
.

We can show this is exactly what one would get ifABz = constant, since that would be the same as
saying

d
dz

[
A(z)Bz(z)

]
= 0

A
dBz

dz
+ Bz

dA
dz

= 0

and if we divide each term on the left-hand side byABz, we get the boxed equation above.

3. Magnetic flux tubes in the Sun’s atmosphere.Consider a small piece of the solar surface, in which thin
flux tubes with strongB are peppered through larger regions of weak/negligibleB:

Let’s assume the entire region shown above is isothermal (i.e., constantT throughout), and thezdependence
of densityρ obeys the hydrostatic equilibrium derived in class,

ρ(z) = ρ0 exp
(

−
z
H

)
where H =

kBT
µmH g

.

where the density at the base (z= 0) inside the tubeρ0,T does not necessarily equal the base density in the
surroundingsρ0,S.
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(a) If the plasma inside the tube is in total pressure balance with the plasma outside the tube, show that
thez dependence of magnetic field strengthB inside the tube obeys

B(z) = B0 exp
(

−
z
K

)

and solve forB0 andK in terms of the other properties of the system.

(b) Using the principle of magnetic flux conservation from the previous problem, note that ifB(z)
decreases with increasing height, then the cross-sectional area of the tube A(z) must increase. If
the tubes occupy 1% of the solar surface at the lower boundary (z= 0), then at what height will they
fill the entire surface? Solve for this “merging height” both in terms of the othervariables and also
as an actual number (in units of km) for the real solar case ofT ≈ 5000 K andµ ≈ 1.3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) The total pressure is given by

Ptot = Pgas+ Pmag =
ρkBT
µmH

+
B2

2µ0
.

The interior of the tube has both gas and magnetic pressure. The surroundings have weak or negligible
magnetic field, so that allows us to assume that the surroundings haveonly gas pressure. Thus, if the
total pressure is equal at a given heightz in the two regions, then

Ptot,T = Ptot,S

ρTkBT
µmH

+
B2

2µ0
=

ρSkBT
µmH

and thus, we can solve for

B2

2µ0
=

(ρS−ρT)kBT
µmH

=
[

(ρ0,S−ρ0,T)kBT
µmH

]
exp

(
−

z
H

)
.

Thus, we can solve for

B(z) = B0 exp
(

−
z
K

)

where

B0 =

√
2µ0(ρ0,S−ρ0,T)kBT

µmH
K = 2H .

(b) When magnetic flux is conserved, the last problem told us that the product B(z)A(z) should remain
constant. Thus,

B0A0 = BmAm

where subscript ‘0’ refers to the photospheric lower boundary, andsubscript ‘m’ refers to the merging
height at which the flux tubes expand to fill the volume.

We don’t need absolute values for the areasA0 andAm. We know thatA0 is 1% of the solar surface,
andAm is essentially 100% of the solar surface, so we can write the above formula as aratio...

Bm

B0
=

A0

Am
= 0.01 .
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We also know from part (a) that the magnetic field strengthBm at some heightzm above the photosphere
can be written as

Bm = B0 exp
(

−
zm

2H

)
i.e.,

Bm

B0
= 0.01 = exp

(
−

zm

2H

)

which can be solved for
zm = −2H ln(0.01)

which must be a positive number, since ln(0.01) =−4.605. Plugging in the numbers given, the scale
heightH = 116 km. Thus,

zm = 1067 km

which is in the middle of the chromosphere.
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