ASTR-3760: Solar and Space Physics ................ Resit for Problem Set 2 KEY
Maximum number of points: 75 .......... ... ... i (Due Mon., March 30, 2016)

1. In Lecture 5, it was shown that to leading order the center-to-limb variation is given by

cosO dB,

I(p) = B, — S dr (1)

Compare this solution with that found for problem 1 of Homework 2 assuming that the source
function is S = B, with S(r) = 0.1 + 1.357 — 30.4572. Sketch this solution in the key to
Homework 2 for problem 1.

We drop the subscript v (gray approximation) and write the r derivative in terms of a 7
derivative by using
—prdr =dr.

Furthermore, cosf = p, so Eq. (1) takes the form

dS(r)
dr

L(p,7) = S(7) +

Inserting now the solution S(7) = 0.1+ 1.357 — $0.4572, we find
I(p,7) = 0.1 + 1.357 — 0.4572 + 41 (1.35 — 0.97)
Applying this to 7 = 0 (because the observer is at 7 — 0), we have
I,(u,7=0)=0.141.35p.

”

This solution is overplotted in the figure below and labelled as “Eq.(1)”.
the tangent of the exact solution through p = 0.
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2. In Lecture 4, we looked at the periodic table and computed the energy mc? gain in the reaction
4H — He. Compare with the corresponding energy gain (or loss) for the hypothetical reactions
7TH — Li, 9H — Be, 10H — B, 12H — C, 14H — N, 16H — O, 19H — F, and 20H — Ne.

We use my = 1.008 and denote by n the number of nucleons of the target product, whose
mass is denoted by Miarget. The last column gives the mass difference per nucleon, i.e.,

(an - mtarget)/n-

reaction NMH  Miarget  MIMH — Miarget  PEr NUcleon
4H — He  4.032  4.0026 0.0294 0.0073
TH — Li 7.056 6.94 0.116 0.0166
9H — Be  9.072 9.012 0.060 0.0067
10H— B  10.08 10.81 —0.73 —0.073
12H — C  12.096 12.011 0.085 0.0071
14H — N 14.112 14.007 0.105 0.0075
16H— O 16.128 15.999 0.129 0.0081
19H — F  19.152 18.9984 0.1536 0.0081
20H — Ne 20.16 20.1797 —0.0197 —0.0010

The energy gain per nucleon would be the largest for lithium. The problem here is that
lithium is destroyed for temperatures slightly above 2 million K.

3. Using the Planck law,
2hv3 1

I(v,T) = 2 ehv/keT _ 1’ (2)

to derive the limits for large and small frequencies v.

For small frequencies, v — 0, we have e"/kT ~ 1 4 hy /kpT, so we have

2hv3 1 2h3 1 202

I(v,T) ~ = 7
W)~ T T =1~ @ kT~ 2

kpT.

For large frequencies, v — oo, the exponential function dominates compared with unity, so
we can write 5
2h” kT
I(I/7 T) = 7 e B
4. Ignoring effects of the atmosphere, what is the theoretical effective temperature on Titan,
which has a distance of 1.427 x 10'?m from the Sun. You may use the material of Lecture 4
for this exercise.

In lecture 4, we derived the formula

Tgfarth _ Tesém (R285n> 1/2

Applying this to Titan, we have

1/2
. 7 x 108
Titan __ _
Tog ™ = 5778 x <2><1.427><1012) K=90K



This ignores the effects of albedo and greenhouse effects. Interestingly, the greenhouse effect
is a negative one for Titan. If one takes Titan’s albedo of A = 0.21 into account, one has an
extra (1 — A)/4 ~ 0.94 factor, so T,it** = 85 K.

. Using index notation, show that

VxVxA=VV-A-V?A (3)

We insert the formulae for cross products and compute the ith component of V x V x A as
follows:

(V x V x A), = Eijkaj<v X A)k = GijkajeklmalAm. = GijkﬁklmajalAm.
Next, we use the formula for double epsilons: €;;r€xim = 0i10jm — dimdji, and obtain
(V x V x 44)Z = (5il5jm — 5,~m5ﬂ)8jalAm = 8j8,-Aj — 8]‘6]'/11‘.

Here, 0;0;A; = 0;(0;A;) (because 0; and 0; commute), but since 0;A; is just the diverence
of A, and the unbalanced 0; corresponds to a gradient, we have V(V - A) = VV - A. The
operator 0;0; is just the Laplacian, V2, so we have

VxVxA=VV-A-VA

. (a) Using the material of Lecture 8, show that Q> + U? + V2 = I?. (b) Discuss why this
relation is not obeyed for “wave packets” of finite length (see Sect. 3.5.2 of Stix 2002).

The x and y components of the electric field vector are given by F, = £,.cos¢ and E, =
&y cos(¢ + €). The corresponding 4 Stokes parameters are then

I=+8 Q=E-¢ U=2%kcose, V=2%¢sine
Next, we compute Q> 4+ U? + V72, ie.,
Q*+U?+V? = (&~ 65)2 + (26,6, cos €2) + (26,€, sin€)? = (€2 — 55)2 + 4€§§§(C082 € +sin’e)
Using cos? € 4 sin® € = 1, we have
Q° + U+ V2 = (€2 - €)? + 4826, = &, — 26260 + 6, + 46367 = &, + 26560 + &,

and so
QU HVE= G425+ 6 = (G +&)" =T"

For wave packets of finite length, we have to take averages, so
U? = 4(€,€, cos €)? < 4<§x§y>2<0052 €), V= 4(&,€y sin €)? < 4<£x§y>2<sin2 €),

and therefore Q? 4+ U? + V2 < I?.



7. What is the mean molecular weight p for an ionized mixture with hydrogen abundance of (i)
X =0.735 or (ii) X = 0.739, assuming Y = 1 — X for the helium abundance.

In lecture 10, we derived the formula

F=XTvn
for a neutral gas. This is because the fractional number densities of H and He are respectively

pX pY
ng = —, NHe = .
mH MHe

In the (singly) ionized case, there are twice as many particles, i.e.,

1

- —0.624 0.599
2X +2Y/4 o

I

for cases (i) and (ii), respectively. However, helium can also be doubly ionized, in which case
we have 3 particles per helium atom, so

1

=———— =10.622 .
3X +3v/4 0.6 or 0.597

I

for cases (i) and (ii), respectively.



