
ASTR-3760: Solar and Space Physics . . . . . . . . . . . . . . . . . . .Resit for Problem Sets 4+5

Maximum number of points: 2 × 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Due Wed., April 27, 2016)

Please try to be neat when writing up answers. In cases where calculations are called for, please show
all of the intermediate steps, including any approximations you choose to make and any sketches
you may need to illustrate what’s what. Be careful to properly evaluate units and significant figures.
Calculations given without ‘showing the work’ will receive zero credit, even if the final answer is
correct.

1. Use dimensional arguments to determine the form of the energy spectrum E(k) for hydromagnetic
turbulence. You may assume that the spectrum can be written in the form

E(k) = C (vAǫ)akb,

where C is a dimensionless constant, vA is the Alfvén speed, ǫ (with dimension m2 s−3) the
energy injection rate, and k the wavenumber.

[Note that
∫

E(k)dk has the dimension m2 s−2.]

2. Your favorite space weather story:

(a) Describe in a few words your favorite space weather story.

(b) Try to complement the story with some simple numerical estimates to check whether it
makes sense.

(c) How frequent is an event of the type you described?

3. Assume that the magnetic field, B, is governed by the equations

∂B

∂t
+ ∇ × E = 0, J = ∇ × B/µ0, E = −v × B,

where E is the electric field, J the current density, v the velocity, and µ0 the permeability.

(a) Show that

∂

∂t

(

B
2

2µ0

)

+
1

µ0

B · ∇ × E = 0.

(b) Write ∇ · (E × B) = ǫijk∂i(EjBk) and show, using the product rule, that

∇ · (E × B) = B · ∇ × E − E · ∇ × B.

[Remember that ǫijk = ǫjki = −ǫjik.]

(c) Use this relation to show that

∂

∂t

(

B
2

2µ0

)

+ ∇ ·
(

E × B

µ0

)

+ J · E = 0.

(d) Show that the energy equation can be written in the form

∂

∂t

(

B
2

2µ0

)

+ ∇ ·
(

E × B

µ0

)

+ v · (J × B) = 0.
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4. Use the Eddington solution, S(τ) = (3/4π)F (τ + 2

3
), in the formal solution for radiative

transfer for

(a) upward propagating rays

I(τ, µ) = eτ/µ
∫

∞

τ
S(τ ′) e−τ ′/µ dτ ′/µ (for upward rays, µ > 0), (1)

to show that

I(τ, µ) = (3/4π)F (τ + 2

3
+ µ) (for µ > 0), (2)

(b) downward propagating rays

I(τ, µ) = eτ/µ
∫

0

τ
S(τ ′) e−τ ′/µ dτ ′/µ (for downward rays, µ < 0) (3)

to show that

I(τ, µ) = (3/4π)F [(τ + 2

3
+ µ) − (2

3
+ µ) eτ/µ] (for µ < 0). (4)

5. Compute numerically for τ = 1/3 the first three moments of the intensity

J(τ) = 1

2

∫

1

−1

I(τ, µ) dµ (5)

H(τ) = 1

2

∫

1

−1

I(τ, µ)µdµ (6)

K(τ) = 1

2

∫

1

−1

I(τ, µ)µ2 dµ (7)

where

I(τ, µ) = (3/4π)F (τ + 2

3
+ µ) (for µ > 0), (8)

I(τ, µ) = (3/4π)F [(τ + 2

3
+ µ) − (2

3
+ µ) eτ/µ] (for µ < 0). (9)

Hint: the result should agree with the figure below at τ = 1/3.
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6. For a steady spherically symmetric flow of an isothermal gas with constant sound speed cs,
the Euler equation with a suitable body force is

ur
dur

dr
= −c2

s

d ln ρ

dr
− GM

r2
. (1)

The continuity equation is
1

r2

d

dr
(r2ρur) = 0. (2)

(a) Show that the critical radius r∗ where |ur| = cs, is r∗ = GM/(2c2
s ).

(b) Integrate Eqs (1) and (2), and then eliminate ln ρ to show that

1

2
u2

r − c2

s ln |ur| − 2c2

s ln r − GM

r
= 1

2
c2

s − c2

s ln cs − 2c2

s ln r∗ −
GM

r∗
. (3)

(c) Show that Eq. (3) can be written as

M =
√

C + 2 lnM, (4)

where M = |ur|/cs and

C = 4

(

ln r̃ +
1

r̃

)

− 3,

with r̃ = r/r∗.

(d) Calculate the value of C for r̃ = 10, and find the corresponding value of M using three
iteration steps starting with M = 1. Show your working in all intermediate steps. Sketch
the solution for M against r̃, and indicate the points where r̃ = 1 and 10.

(e) Show that Eq. (4) can also be written as M = exp
[

1

2
(M2 − C)

]

, and, for the same

value of C, iterate for M starting again with M = 1 (use three iterations, show your
working). Again, sketch the solution of M against r̃, indicate the points where r̃ = 1
and 10, and show the direction of the flow. In what area of stellar physics can this model
be applied?
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7. Consider a one-dimensional shock. Use the ideal fluid equations in conservative form

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0,

∂

∂t
(1

2
ρv2 + ρe) +

∂

∂x

[

v
(

1

2
ρv2 + ρe + p

)]

= 0,

where e is the internal energy density per unit mass, and the other variables have their usual
meaning. Assume a perfect gas with

p = (γ − 1)ρe.

(a) Why is it useful to consider a frame of reference comoving with the shock? Show that
in a frame comoving with the shock the following three quantities are conserved:

J = ρv; (1)

I = ρv2 + p; (2)

E = 1

2
v2 +

γ

γ − 1

p

ρ
. (3)

(b) Eliminate first p/ρ and then ρ, to show that

v2

v1

=
2γ

γ + 1

(

1 +
p1

ρ1v2
1

)

− 1

where the subscripts 1 and 2 refer, respectively, to the upstream and downstream sides
of the shock.

(c) Calculate v2 for v1 = 5, ρ1 = p1 = 1 and γ = 5/3.

(d) Calculate ρ2 and p2. Sketch the velocity and density profiles indicating the positions of
the upstream and downstream sides.

(e) State whether the normalised entropy,

s =
1

γ
ln p − ln ρ

is increased or decreased behind the shock. Calculate s1 and s2.
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