
ASTR-3760: Solar and Space Physics . . .Problem Set 4 KEY (Due Mon., March 7, 2016)

1. Stable & unstable stratification of an atmosphere.

(a) Explain qualitatively when the stratification of an atmosphere is stable to convection (use
a sketch of specific entropy versus height).

(b) There is a critical temperature gradient, βcrit = (dT/dz)crit, above which the stratification
becomes unstable to convection. Show that

βcrit = −

(

1 −
1

γ

)

g
µ

R
,

where g is gravity, γ the ratio of specific heats, R the universal gas constant and µ the
mean molecular weight. [Hints: use the condition c−1

p ds/dz = 0 = γ−1d ln p/dz − d ln ρ/dz
for adiabatic stratification, write this in terms of p and T using the perfect gas equation
p = (R/µ)ρT , and eliminate p using the equation of hydrostatic equilibrium, dp/dz = −ρg.]

(c) Consider an isothermal model of the upper layers of the Sun. Estimate the scale height
H = c2

s/g, using cs = 7 km s−1, and g = GM/R2 (you may take G = 7 × 10−11 m3 kg−1 s−2,
M = 2 × 1030 kg, and R = 7 × 108 m).

(d) Calculate the entropy gradient

1

cp

ds

dz
=

(

1 −
1

γ

)

1

H

with γ = 5/3.

(e) A hot bubble is in pressure equilibrium, but with a 10% density deficit relative to the
surroundings. Calculate how far it will rise before reaching equilibrium.

(f) What are buoyancy oscillations (also known as Brunt-Väisälä oscillations)? What is the
relevant restoring force? Give a mathematical expression of the force per unit mass, i.e., the
acceleration.

(g) Estimate (within a factor of 3) the period TBV = 2π/ωBV, where

ωBV =

(

1 −
1

γ

)1/2 g

cs
, (1)

for the solar atmosphere (radius from the center r = 700 Mm, sound speed cs = 6 km s−1)
and the bottom of the solar convection zone (r = 500 Mm, cs = 200 km s−1). Use γ = 5/3,
g = GM/R2, where G = 7 × 10−11 m3 kg−1 s−2, and M = 2 × 1030 kg. Give the period in
seconds, minutes, or hours, as appropriate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) An initially buoyant blow has lower density than the environment and therefore an entropy
excess relative to the environment (δS/cp = −δ ln ρ). When the environment has a positive
gradient of specific entropy (see Fig. 1), the blob will rise until its entropy matches that of
the environment.
It will be buoyantly neutral at this point. But because of the blob’s inertial, it will overshoot
by a certain amount. It will then have an entropy deficit relative to the environment, so it
will be heavier and eventually fall back, so it is stable and there is no run-away (as in the
unstable case).
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Figure 1: Positive gradient of specific entropy (see Lecture 15).

(b) Since the entropy s is constant we have

0 =
1

γ

d ln p

dz
−

d ln ̺

dz
=

1

γ

d ln p

dz
−

(

d ln p

dz
−

d lnT

dz

)

=
d lnT

dz
−

(

1 −
1

γ

)

d ln p

dz
,

because ̺ ∝ p/T . So we have

d lnT

dz
=

(

1 −
1

γ

)

d ln p

dz
. (2)

Using hydrostatic equilibrium, we have

d ln p

dz
=

1

p

dp

dz
= −

̺

p
g = −

g

RT/µ
. (3)

Combining Eqs. (2) and (3), we have

dT

dz
= −

(

1 −
1

γ

)

g
µ

R
.

Since we did this calculation assuming s = const (adiabaticity) this is then indeed the critical

temperature gradient, βcrit.

(c) Compute g = GM/R2
≈ 290 m s−2 with the numbers provided. Thus, H = c2

s/g = 170 km.

(d) For γ = 5/3, we have 1 − 1/γ = 2/5 = 0.4, so the entropy gradient is 0.4/1.7 × 105 m−1 =
2.4 × 10−6 m−1.

(e) A density deficit of 10% means that δ ln ρ = −0.1 and therefore we have δs/cp = 0.1. To get
the height, we need to divide this by the slope of the curve, i.e.,

height = 0.1/2.4 × 10−6 m−1 = 42, 500 m ≈ 40 km.

(f) Brunt-Väisälä oscillations are vertical up & down motions in a stably stratified atmosphere.
The relevant restoring force is gravity or the buoyancy force, δρ g.

(g) Inserting g = GM/R2, the expression for the buoyancy or Brunt-Väisälä frequency is

ωBV =

(

1 −
1

γ

)1/2 GM

R2cs

, (4)

With 1 − 1/γ = 0.4, and hence
√

1 − 1/γ ≈ 0.6, we have

ωBV = 0.6
7 × 10−11

· 2 × 1030

(0.7 × 109)2 · 0.6 × 104
, (5)
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which gives ωBV ≈ 0.03 s−1 and for the period 2πωBV ≈ 4 min at the surface, and

ωBV = 0.6
7 × 10−11

· 2 × 1030

(0.5 × 109)2 · 2 × 105
, (6)

which gives ωBV ≈ 1.7 × 10−3 s−1 and for the period 2πωBV ≈ 60 min at the bottom of the
convection zone, i.e., one hour.

2. Momentum and energy equations in conservative forms. Consider the continuity,
momentum, and energy equations in the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (7)

and

ρ
∂u

∂t
+ ρu · ∇u + ∇p = 0, (8)

∂e

∂t
+ u · ∇e +

p

ρ
∇ · u = 0, (9)

where e is the internal energy per unit mass (which was called u in the lecture).

(a) Derive the evolution equation for the momentum density

∂

∂t
(ρui) = −

∂

∂xj
(ρuiuj + δijp) (10)

Note that summation over double indices is assumed!

(b) Explain why this equation is in conservative form. Discuss how the volume-integrated
momentum changes for periodic boundary conditions. What other boundary conditions
give the same result?

(c) Derive the so-called total energy equation in the form

∂

∂t
(1
2
ρu

2 + ρe) = −
∂

∂xj

[

uj

(

1
2
ρu

2 + ρe + p
)]

, (11)

Again, summation over double indices is assumed.

(d) Explain in words how these equations can be used to say something about hydrodynamic
planar shocks, where density, pressure, and density can discontinuously across a surface.
Consider a one-dimensional frame of reference comoving with the shock. What happens to
the time derivative in that frame? Use the equation of state in the form

p = (γ − 1)ρe

and count how many unknowns do you have?

(a) Using the product rule, we have

∂ρui

∂t
= ρ

∂ui

∂t
+ ui

∂ρ

∂t
(12)

Likewise
∂

∂xj
[(ρuj)ui] = (ρuj)

∂

∂xj
ui + ui

∂

∂xj
(ρuj) (13)
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With this we can write

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = ρ

Dui

Dt
+ ui

(

∂ρ

∂t
+

∂

∂xj
(ρuj)

)

. (14)

Inserting ρDui/Dt = −∂p/∂xi, and noting that we can write ∂p/∂xi = ∂(δijp)/∂xj , we can
pull this term underneath the ∂/∂xj derivative and have

∂

∂t
(ρui) +

∂

∂xj
(ρujui + δijp) = 0 (15)

(b) It is in conservative form, because the rate of change of the momentum ρu is given by
a negative divergence term. Integrating over a certain volume, the rate of change of the
integrated momentum is given by the surface integral of the momentum tensor, i.e.,

d

dt

∫

ρui dV = −

∮

(ρujui + δijp) dSj . (16)

In vanishes for periodic boundary conditions, for example, but it also vanishes of ρ and p
vanish on the boundary.

(c) We use the energy and momentum equations,

ρ
De

Dt
= −p∇ · u − ∇ · F (17)

as well as the momentum equation,

ρui
Dui

Dt
= −u · ∇p (18)

Add the two gives

∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj
(ρuje + 1

2
ρuju

2) = −∇ · (pu) (19)

Thus, we have
∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj
(ρuje + 1

2
ρuju

2 + puj) = 0 (20)

or
∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj

[

uj(ρe + 1
2
ρu

2 + p)
]

= 0 (21)

(d) In a frame moving with the shock, the shock is stationary and therefore all time derivatives
vanish, and therefore the divergences vanish. Since the shock is planar, we can assume it
to move along the x direction, so the divergences are just x derivatives, and thus the terms
underneath these x derivatives must be constant, i.e., equal when evaluated on both sides of
the shock. Thus, we have

ρux = const

ρu2
x + p = const

ux(1
2
ρu2

x + ρe + p) = const

Together with the equation of state, we have4 equations for 4 unknowns, Assuming that we
know the state of the shock on one side, then, we can use these 4 equations to solve for the 4
unknowns ux, ρ, p, and e on the other side of the shock.

4



Incidently, the last of the three equations can be rewritten as ρux(1
2
u2

x + e + p/ρ) = const so
by using the first equation, the last one can be written as

1
2
u2

x + e + p/ρ = const

which is of now a different constant.

3. Sound waves in a stratified atmosphere. Consider the continuity and momentum equations
for an isothermal atmosphere with constant speed of sound, cs, and uniform gravity, g, in one
dimension,

∂ρ

∂t
+ uz

∂ρ

∂z
+ ρ

∂uz

∂z
= 0, (22)

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
+ c2

s

∂ρ

∂z
+ ρg = 0, (23)

where ρ is density and uz vertical velocity. Instead of using subscripts 0 and 1 for equilibrium and
perturbed solutions, as we did in the lecture, we use here overbars and primes instead. Here, the
quantities with an overbar are not necessarily constant. By contrast, the subscript 0 refers now to
a constant coefficient.

(a) Show that the solution for hydrostatic equilibrium, uz = uz = 0, is ρ = ρ(z) = ρ0 e−z/H ,
where ρ0 is a constant and H = c2

s/g is the vertical scale height.

(b) Write ρ = ρ + ρ′ and uz = u′

z and linearize equations (27) and (28) with respect to ρ′ and
u′

z.

(c) Assume that ρ′ and uz = u′

z take the form

ρ′(z, t) = ρ1e
ikz−iωt−z/2H , (24)

u′

z(z, t) = w1e
ikz−iωt+z/2H , (25)

and show that the linearized equations can be written as
(

−iω [ik − (2H)−1]
[ik + (2H)−1]c2

s −iω

) (

ρ1

ρ0w1

)

=

(

0
0

)

(26)

(d) Calculate the dispersion relation. Note: it will be convenient to use the abbreviation
ω0 = cs/2H for the acoustic cutoff frequency.

(e) Give a qualitative plot of the dispersion relation.

(f) Calculate the value of the period 2π/ω0 for the solar atmosphere, assuming cs = 6 km/s and
g = 270 ms2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In hydrostatic equilibrium we have

c2
s

d ln ρ

dz
= −g

so ln ρ/ρ0 = −gz/c2
s and therefore ρ = ρ0 exp(−gz/c2

s ), which we write as ρ = ρ0 exp(−z/H),
where H = c2

s/g is the scale height.

(b) The linearized equations take the form

∂ρ′

∂t
+ u′

z

dρ

dz
+ ρ

∂u′

z

∂z
= 0, (27)

ρ
∂u′

z

∂t
+ c2

s

∂ρ′

∂z
+ ρ′g = 0, (28)
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(c) Inserting Eqs. (24) and (25), we have

−iωρ1e
ikz−iωt−z/2H+w1e

ikz−iωt+z/2H
(

−
ρ0

H
e−z/H

)

+ρ0e
−z/H

(

ik +
1

2H

)

w1e
ikz−iωt+z/2H = 0

(29)

−iωρ0e
−z/Hw1e

ikz−iωt+z/2H + c2
s

(

ik −
1

2H

)

ρ1e
ikz−iωt−z/2H + gρ1e

ikz−iωt−z/2H = 0, (30)

Note that in both equations the exponential factors cancel, which requires in some expressions
the presence of the e−z/H factors from the background density. Thus, we have

−iωρ1 + w1

(

−
ρ0

H

)

+ ρ0

(

ik +
1

2H

)

w1 = 0 (31)

−iωρ0w1 + c2
s

(

ik −
1

2H

)

ρ1 + gρ1 = 0, (32)

using g = c2
s/H, and combining terms, we have

−iωρ1 +

(

ik −
1

2H

)

ρ0w1 = 0 (33)

−iωρ0w1 + c2
s

(

ik +
1

2H

)

ρ1 = 0 (34)

In matrix form, this can be written as

(

−iω [ik − (2H)−1]
[ik + (2H)−1]c2

s −iω

) (

ρ1

ρ0w1

)

=

(

0
0

)

(35)

(d) The determinant of the matrix vanishes when

−ω2
−

(

−k2
−

1

4H2

)

c2
s = 0 (36)

or
ω2 = c2

sk
2 + ω2

0 (37)

(e) Fig. 2 shows two graphic representations of the dispersion relation.

Figure 2: Dispersion relation.

(f) Inserting the numerical values, we have ω0 = cs/2H = g/2cs = 270/12, 000 s−1 = 0.0225 s−1,
so the period is 280 s = 4.7 min.
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