
ASTR-3760: Solar and Space Physics . . . . . . . .Problem Set 4 (Due Mon., March 7, 2016)

Please try to be neat when writing up answers. In cases where calculations are called for, please show
all of the intermediate steps, including any approximations you choose to make and any sketches
you may need to illustrate what’s what. Be careful to properly evaluate units and significant figures.
Calculations given without ‘showing the work’ will receive zero credit, even if the final answer is
correct.

1. Stable & unstable stratification of an atmosphere.

(a) Explain qualitatively when the stratification of an atmosphere is stable to convection (use
a sketch of specific entropy versus height).

(b) There is a critical temperature gradient, βcrit = (dT/dz)crit, above which the stratification
becomes unstable to convection. Show that

βcrit = −

(

1 −
1

γ

)

g
µ

R
,

where g is gravity, γ the ratio of specific heats, R the universal gas constant and µ the
mean molecular weight. [Hints: use the condition c−1

p ds/dz = 0 = γ−1d ln p/dz − d ln ρ/dz
for adiabatic stratification, write this in terms of p and T using the perfect gas equation
p = (R/µ)ρT , and eliminate p using the equation of hydrostatic equilibrium, dp/dz = −ρg.]

(c) Consider an isothermal model of the upper layers of the Sun. Estimate the scale height
H = c2

s/g, using cs = 7 km s−1, and g = GM/R2 (you may take G = 7 × 10−11 m3 kg−1 s−2,
M = 2 × 1030 kg, and R = 7 × 108 m).

(d) Calculate the entropy gradient

1

cp

ds

dz
=

(

1 −
1

γ

)

1

H

with γ = 5/3.

(e) A hot bubble is in pressure equilibrium, but with a 10% density deficit relative to the
surroundings. Calculate how far it will rise before reaching equilibrium.

(f) What are buoyancy oscillations (also known as Brunt-Väisälä oscillations)? What is the
relevant restoring force? Give a mathematical expression of the force per unit mass, i.e., the
acceleration.

(g) Estimate (within a factor of 3) the period TBV = 2π/ωBV, where

ωBV =

(

1 −
1

γ

)1/2 g

cs
, (1)

for the solar atmosphere (radius from the center r = 700 Mm, sound speed cs = 6 km s−1)
and the bottom of the solar convection zone (r = 500 Mm, cs = 200 km s−1). Use γ = 5/3,
g = GM/R2, where G = 7 × 10−11 m3 kg−1 s−2, and M = 2 × 1030 kg. Give the period in
seconds, minutes, or hours, as appropriate.
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2. Momentum and energy equations in conservative forms. Consider the continuity,
momentum, and energy equations in the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

and

ρ
∂u

∂t
+ ρu · ∇u + ∇p = 0, (3)

∂e

∂t
+ u · ∇e +

p

ρ
∇ · u = 0, (4)

where e is the internal energy per unit mass (which was called u in the lecture).

(a) Derive the evolution equation for the momentum density

∂

∂t
(ρui) = −

∂

∂xj
(ρuiuj + δijp) (5)

Note that summation over double indices is assumed!

(b) Explain why this equation is in conservative form. Discuss how the volume-integrated
momentum changes for periodic boundary conditions. What other boundary conditions
give the same result?

(c) Derive the so-called total energy equation in the form

∂

∂t
(1

2
ρu

2 + ρe) = −
∂

∂xj

[

uj

(

1

2
ρu

2 + ρe + p
)]

, (6)

Again, summation over double indices is assumed.

(d) Explain in words how these equations can be used to say something about hydrodnamic
planar shocks, where density, pressure, and density can discontinuously across a surface.
Consider a one-dimensional frame of reference comoving with the shock. What happens to
the time derivative in that frame? Use the equation of state in the form

P = (γ − 1)ρe

and count how many unknowns do you have?
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3. Sound waves in a stratified atmosphere. Consider the continuity and momentum equations
for an isothermal atmosphere with constant speed of sound, cs, and uniform gravity, g, in one
dimension,

∂ρ

∂t
+ uz

∂ρ

∂z
+ ρ

∂uz

∂z
= 0, (7)

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
+ c2

s

∂ρ

∂z
+ ρg = 0, (8)

where ρ is density and uz vertical velocity. Instead of using subscripts 0 and 1 for equilibrium and
perturbed solutions, as we did in the lecture, we use here overbars and primes instead. Here, the
quantities with an overbar are not necessarily constant. By contrast, the subscipts 0 refers now to
a constant coefficient of the equilibrium solution and subscipts 1 denotes a constant coefficient in
the perturbed solution. Consult lecture 11, page 12, for a similar (but simpler) problem.

(a) Show that the solution for hydrostatic equilibrium, uz = uz = 0, is ρ = ρ(z) = ρ0 e−z/H ,
where ρ0 is a constant and H = c2

s/g is the vertical scale height.

(b) Write ρ = ρ + ρ′ and uz = u′

z and linearise equations (7) and (8) with respect to ρ′ and u′

z.

(c) Assume that ρ′ and uz = u′

z take the form

ρ′(z, t) = ρ1e
ikz−iωt−z/2H , (9)

u′

z(z, t) = w1e
ikz−iωt+z/2H , (10)

and show that the linearised equations can be written as

(

−iω [ik − (2H)−1]
[ik + (2H)−1]c2

s −iω

) (

ρ1

ρ0w1

)

=

(

0
0

)

(11)

(d) Calculate the dispersion relation. Note: it will be convenient to use the abbreviation
ω0 = cs/2H for the acoustic cutoff frequency.

(e) Give a qualitative plot of the dispersion relation.

(f) Calculate the value of the period 2π/ω0 for the solar atmosphere, assuming cs = 6 km/s and
g = 270 ms2.
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