
ASTR-3760: Solar and Space Physics . . . Problem Set 5 KEY (Due Mon., April 11, 2016)

Please try to be neat when writing up answers. In cases where calculations are called for, please show
all of the intermediate steps, including any approximations you choose to make and any sketches
you may need to illustrate what’s what. Be careful to properly evaluate units and significant figures.
Calculations given without ‘showing the work’ will receive zero credit, even if the final answer is
correct.

1. Your favorite space weather story.

(a) Describe in a few words your favorite space weather story.

(b) Try to complement the story with some simple numerical estimates to check whether it makes
sense.

(c) How frequent is an event of the type you described?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) My favorite space weather story is the event of November 4, 2015, when at 14:00 UT most of
Sweden’s aviation radars experienced heavy disturbances that subsequently led to all flight
radars to be turned off for about two hours. In the beginning, space whether was made
responsible for this, although it was unusual that there was only a medium sized M3.7 flare
on the Sun, which did not trigger any immediate warnings. However, Opgenoorth et al.1

reported that this event was actually caused by an extreme radio-burst with a flux density
of more than 50,000 solar flux units (sfu, and 1 sfu = 10−22 W m−2 Hz−1 = 104 Jy) at GHz
frequencies.

(b) A typical radio frequency for solar observations is 10 cm. In fact, the emission at 10.7 cm
(= 2.8 GHz) is used by NOAA as an indicator of solar activity and is called the F10.7 index.
Looking at Fig. 1.6 of Stix (see also Lecture 2, page 20), we see that at that wavelength, the
thermal background flux is 10−20 W m−2 Hz−1, which corresponds to 100 sfu. The brightness
temperature at that wavelength is slightly above chromospheric values, i.e. 10, 000 K. An
increase by a factor of 500 would mean 5 million Kelvin, which is comparable to the Virial
temperature, above which the thermal velocity would exceed the escape speed (cpT ≈ GM/R,
which gives 7e-11*2e30/7e8/(2.5*8300)K = 107 K).

(c) To judge how frequent such events are, I looked for earlier studies measuring solar radio
flares. Nita et al.2 studied 412 flares during 2001–2002 at frequencies in the range 1–18 GHz
and found that the number density of flares n(S) decreases with increasing flux density S
like a powerlaw with n(S) ≈ 2600S−1.7. According to Table 2 of their paper, an event with
S = 100 sfu occurs roughly once or twice a day. An event with S = 5 × 104 sfu has a 500
times larger flux density, and since 5001.7 ≈ 4 × 104, one may conclude that even event like
that in Sweden could occur roughly once every 10 years.

2. Eddington approximation.

In class we used several approximations to derive the temperature structure T (τ) of the solar

1Opgenoorth et al., 2016, “Solar activity during the space weather incident of Nov 4., 2015 – Complex data and

lessons learned,” Geophys. Res. Abstr., Vol. 18, EGU2016-12017
2Nita, G. M., Gary, D. E., & Lee, J., 2004, “Statistical Study of Two Years of Solar Flare Radio Spectra Obtained

with the Owens Valley Solar Array” Astrophys. J., 605, 528–545
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photosphere. If one uses this to solve for the source function S, and then plug S back into the
equation of radiative transfer, we get a differential equation for I(µ, τ). The solution to that equation
is:

I(µ, τ) =

{

3H⊙ (τ + µ + q) for µ > 0 (i.e., upward propagating rays),

3H⊙

[

(τ + µ + q) − (µ + q) eτ/µ
]

for µ < 0 (i.e., downward propagating rays).

where q = 2/3 and H⊙ is proportional to the constant energy flux of radiation through the atmosphere.
Also, let’s define

Iup(τ) = I(+1, τ) and Idown(τ) = I(−1, τ)

(a) For the limiting case of τ ≫ 1, write simpler approximations for Iup and Idown. Compute the
ratio Iup/Idown. Does it make sense for this limit of the “deep interior?”

(b) Write the angle dependence I(µ) for the limiting case of τ → 0. Does it agree with what was
discussed in class about the phenomenon of “limb darkening” at the solar surface?

(c) At the surface (τ = 0), compute the angle moments

J =
1

2

∫ +1

−1
dµ I(µ) H =

1

2

∫ +1

−1
dµ µ I(µ) K =

1

2

∫ +1

−1
dµ µ2 I(µ)

as functions of H⊙. Note: You can set aside (for now) the fact that the moment quantity H
is supposed to be the same thing as H⊙. We’re trying to see how “self-consistent” this model
is.

(d) From your answer to part (c), evaluate whether Eddington’s approximations (J = 3K and
J = 2H) are good approximations at the solar surface. In other words, if these approximations
are not exactly true, then compute how “bad” they are (i.e., percentage error). You can also
compare H to H⊙ to get another estimate of the error.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) For arbitrary values of τ , the up/down intensities can be written

Iup = 3H⊙(τ + 1 + 2
3) = 3H⊙(τ + 5

3) = H⊙(3τ + 5)

Idown = 3H⊙[(τ − 1 + 2
3) − (−1 + 2

3) e−τ = 3H⊙(τ −
1
3 + 1

3 e−τ ) ≈ H⊙(3τ − 1)

(Remember that for the “downward” case that µ is negative!) Thus, in the limiting case of the
deep atmosphere (τ ≫ 1), the dominant terms are

Iup ≈ 3H⊙τ and Idown ≈ 3H⊙τ

so that the ratio Iup/Idown ≈ 1. This makes sense, since as you go deeper into the interior, the
radiation field becomes more and more an isotropic blackbody. Anisotropy remains (because
the flux is finite), but it becomes weaker in relative terms. More accurately, we can write

Iup/Idown ≈ (τ + 5
3)/(τ −

1
3) ≈ (1 + 5

3τ−1)/(1 −
1
3τ−1) ≈ (1 + 5

3τ−1)(1 + 1
3τ−1) ≈ 1 + 2τ−1.

Figure 1 confirms that Iup/Idown approaches unity like 1 + 2τ−1.
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Figure 1: Double-logarithmic representation of the τ dependence of the ratio Iup/Idown and semi-
logarithmic representation of the inverse ratio Idown/Iup. For τ > 10, the ratio is close to 1 + 2τ−1,
while for τ < 2, the Eddington approximation (shown in dashed) begins to deviate.

(b) In the limit of τ = 0, the general expression for the intensity is

I(µ, 0) =

{

3H⊙

(

µ + 2
3

)

for µ > 0,

0 for µ < 0.

This makes sense. At the top of the atmosphere, there are no rays pointing inward. The rays
coming up from below exhibit limb darkening, since the center of the Sun (µ = +1) has an
intensity of 5H⊙ while the grazing rays from the limb of the Sun (µ = 0) have an intensity of
2H⊙. The limb is about 40% less bright than the disk-center.

(c) We want to integrate the equation given in the answer to part (b) above, which means the
integration limits only need to go from 0 to +1. After going through the integrations, we get

J = 1
2

∫ 1

0
I(µ, 0) dµ =

3H⊙

2

∫ 1

0
(µ + 2

3) dµ = H⊙(3
4 + 1) =

7

4
H⊙ =

7

4

F⊙

4π
(1)

H = 1
2

∫ 1

0
I(µ, 0)µdµ =

3H⊙

2

∫ 1

0
(µ2 + 2

3µ) dµ = 3H⊙(1
3 + 1

3) = H⊙ =
F⊙

4π
(2)

K = 1
2

∫ 1

0
I(µ, 0)µ2 dµ =

3H⊙

2

∫ 1

0
(µ3+2

3µ2) dµ = 3H⊙(1
4+2

9) = H⊙(3
8+1

3) = H⊙
9+8
24 = H⊙

17
24 = 17

24

F⊙

4π
(3)

(d) It turns out that we didn’t have to worry about the possibility that H was different from H⊙.
However, we do have to worry about departures from Eddington’s two approximations. Instead
of J = 2H, we have J = 1.75 H. If we treat the coefficient 1.75 as the correct value and the
coefficient of 2 as the “guess,” the percentage error of that guess is

2 − 1.75

1.75
≈ 14% .
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Figure 2: Eddington approximation at different optical depth τ .

Instead of J = 3K, we have

J =
7

4
H =

7

4

(

24

17
K

)

=
42

17
K ≈ 2.471 K .

Thus, if we treat the coefficient 2.471 as the actual value and the coefficient of 3 as the guess,
the percentage error of that guess is

3 − 2.471

2.471
≈ 21% .

Thus, the Eddington approximations are okay if we are willing to ignore inconsistencies at the
15–20% level.

2. Is the solar corona in hydrostatic equilibrium? In class, we will derive that a hot corona
(with T ∼ 106 K) will be dominated by heat conduction in the regions far above the surface. In
these regions, the temperature drops off very slowly with increasing distance,

T (r) = T0

(

r0

r

)2/7

where r0 is a base radius in the corona, often assumed to be about 2 R⊙, and T0 is the temperature
at the base radius.

(a) Assuming a corona with no fluid flow (i.e., u = 0 everywhere) in spherical symmetry, write
the equation of hydrostatic equilibrium and show that it can be simplified into the form

d

dr

(

ρ

r2/7

)

= −C1
ρ

r2

and give an expression for the constant C1 in terms of the solar mass, the properties at r0,
and other physical constants.
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(b) Show that the following solution satisfies the above differential equation,

ρ(r) = ρ0

(

r

r0

)2/7

exp

{

C2

[

(

r0

r

)5/7

− 1

]}

where C2 =
7 C1

5 r
5/7
0

and ρ0 is the density at r0.

(c) If r0 = 2R⊙, T0 = 2× 106 K, and ρ0 = 2× 10−15 kg m−3, then solve the above expression for
the hydrogen number density nH at a distance of 1 AU. Feel free to assume that the corona is
all hydrogen (i.e., just protons and electrons).

(d) The observed number density at 1 AU is usually between 1 and 10 protons per cm3. Is the
hydrostatic model a good one?

(e) Write an expression for the gas pressure P using the above hydrostatic model. Show that as
r → ∞, P approaches a constant value (call it P∞) and derive an expression for P∞.

(f) Compute a value for P∞ given the constants from part (c).

(g) Astronomers find that the gas pressure in the interstellar medium (far outside the influence of
the Sun) is about 10−14 to 10−13 pascals (i.e., N m−2). Again, do you think this hydrostatic
model is realistic? What do you think is really happening?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In spherical symmetry, the equation of hydrostatic equilibrium is

dP

dr
= −ρ g where, above the Sun’s surface, g =

GM⊙

r2
.

Using the ideal gas law, we can express P as a product of ρ and T , with

dP

dr
=

kB

µmH

d

dr
(ρ T ) =

kBT0 r
2/7
0

µmH

d

dr

(

ρ

r2/7

)

Thus, we can collect the constants on the right-hand side,

d

dr

(

ρ

r2/7

)

= −

(

GM⊙ µmH

kBT0 r
2/7
0

)

ρ

r2
i.e., C1 =

GM⊙ µmH

kBT0 r
2/7
0

(b) We have to show that the left-hand side of the differential equation equals the right-hand side.

LHS =
d

dr

(

ρ r−2/7
)

= r−2/7 dρ

dr
−

2

7
r−9/7ρ and RHS = −

C1 ρ

r2
.

To help keep everything easy to manage, let’s write

ρ =
ρ0 r2/7 ef(r)

r
2/7
0

where f(r) = C2

(

r0

r

)5/7

− C2 .

To evaluate LHS, we need to take the derivative dρ/dr, which ends up depending on the
derivative df/dr.

dρ

dr
=

ρ0e
f(r)

r
2/7
0

(

2

7 r5/7
+ r2/7 df

dr

)

with
df

dr
= −

5 C2 r
5/7
0

7 r12/7
.
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From the above, we get
dρ

dr
= ρ0e

f(r)

(

2

7 r
2/7
0 r5/7

−
5 C2 r

3/7
0

7 r10/7

)

.

Putting this back into LHS gives three terms, two of which cancel out with one another:

LHS = ρ0e
f(r)

(

2

7 r
2/7
0 r

−
5 C2 r

3/7
0

7 r12/7
−

2

7 r
2/7
0 r

)

The remaining term is very similar to what we get when we write out RHS,

RHS = ρ0e
f(r)

(

−C1

r
2/7
0 r12/7

)

and using the above definition for C2 (in terms of C1 and r0) shows us that LHS = RHS.

(c) First, let’s evaluate the constant C2, which is dimensionless:

C2 =
7 GM⊙ µmH

5 kBT0 r0
= 4.04 .

The radial distance of 1 AU corresponds to r = 215R⊙, so the ratio (r/r0) = 107.5 is also a
dimensionless number. Plugging them in, we get

ρ = 0.077 ρ0 ≈ 1.5 × 10−16 kg m−3 .

For a pure hydrogen plasma, ρ = mHnH, so we can solve for nH ≈ 9 × 1010 protons / m3.

(d) Space physicists like to report quantities in cgs units. The range of measured number densities
n =
1–10 cm−3 is equivalent to n = 106–107 m−3. This is 4 or 5 orders of magnitude lower than the
value we computed in part (c). Thus, it’s looking like the hydrostatic model has some serious
problems.

(e) Plugging in the solutions for ρ and T , we get

P =
ρkBT

µmH
=

kB

µmH

[

ρ0

(

r

r0

)2/7

ef(r)

] [

T0

(

r0

r

)2/7
]

=
ρ0kBT0

µmH
ef(r) .

The (r/r0)
2/7 factors cancel out with one another. The only remaining r dependence in P (r)

is inside the function f(r). However, as we take the limit r → ∞, we see that f(r) approaches
a constant value of −C2. Thus,

P∞ =
ρ0kBT0

µmH
exp

(

−
7 GM⊙ µmH

5 kBT0 r0

)

(f) Plugging in the numbers, we get P∞ ≈ 10−6 pascals .

(g) Just like in part (d), it looks like the hydrostatic model greatly over-estimates the plasma
properties in the distant heliosphere. Our computed P∞ is 7 to 8 orders of magnitude larger
than the interstellar gas pressure. If the corona was really hydrostatic, there would be a huge

gas pressure gradient that would cause the corona to expand rapidly into the ISM, overpowering
it out to distances of several parsecs! This unrealistic prediction is one piece of evidence that
led scientists to think about the possibility of an outflowing solar wind (whose pressure P (r)
keeps decreasing as r increases) instead of a static plasma.
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