|_ecture 2

 Long-term solar variability
—Grant minima/maxima
—Total solar irradiance

 Spectral irradiance
—Black body, gray body

e Internal structure of the Sun

—Y-dependence
—Intensity & radiation transport



Summary of previous lecture

Previous space weather events
— Halloween storm, Carrington flare, etc

Effect on aviation, GPS, radiation, GICs, etc
— GPS stories: climbers on Mt Everest, Heathrow...
— Biol. impact measured In

(A) Grey, (B) Curie, © Sieverts, (D) rem?
Kp index
Sun’s position in HR diagram (L=3.8x102°W)



Long-term variability

Galileo was one of the first Europeans to observe sunspots, although Kepler had
unwittingly observed one in 1607, but mistook it for a transit of Mercury. He also
reinterpreted a sunspot observation from the time of Charlemagne, which
formerly had been attributed (impossibly) to a transit of Mercury. The very
existence of sunspots showed another difficulty with the unchanging perfection of

_Yearly Averaged Sunspot Numbers 1610-2000
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Past sunspot predictions

solar Cycle 24 Sunspoet Number Prediction

Dot Through 31 Mar 07
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I5ES Solar Cyele Hunspet Number Progression
Data Through Aug Q99
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I5ES Selar Cycle Sunspot Number Progression
Data Through Get 03
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http://spaceweather.com

Daily Sun: 25 Sept. 09

sunspots 1025 and1027 are
members of new Solar Cyclke 24,
Fhoto credit: S3OHD/MDI

Sunspot number: 32
Whatis the sunspot number?

Updated 24 Sept 2009

Spotless Days

Current Stretch: 0 days
2009 total: 212 days (80%)
Since 2004: 723 days
Typical Solar Min: 485 days

explanation | more info
Updated 24 Sept 2009

Far side of the Sun:

—ept. 21, 2004

farside  Earthside

This holographic image reveals no
sunspots on the far sice of the sun.

Image credit: S0HO/MDI



Daily Sun: 03 Dec.09

The =un i bEank--no sunspols.

Credi: SOHOMDI

Sunspot number: O

What & the sunspot number’?
Updated 02 Dec 2008

Spotless Days

Current Stretch: 10 days
2009 total: 253 days (75%)
Since 2004: 764 days
Typical Solar Min: 485 days

explanation | more info
Updated 02 Dec 20089




_Low, but not as low as 1913

10 1 Spotless Sun: Blankest Years of the Last Century —
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Little Ice Age

From Wikipedia, the free encyclopedia

For the most recent period much colder than present and with significant glaciation, see

Last glacial period.

The Little Ice Age (LIA) was a period of
cooling that occurred after the Medieval Warm
Period (Medieval Climate Dptimum].[l] While it
was not a true ice age, the term was
introduced into the scientific literature by
Francois E. Matthes in 1939.) It has been
conventionally defined as a period extending
from the sixteenth to the nineteenth centuries,
314151 o alternatively, from about 1300'%! to
about 1850 71819 although climatologists and
historians working with local records no longer
expect to agree on either the start or end dates
of this period, which varied according to local

conditions. The NASA Earth Observatory notes
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Cycle progression as of nhow

5B Selar Cycle Sunspet Number Pregression
Cbsarved data through Dec 2015
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Total solar
Irrradiance

Integrated flux
Over all A
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Pyrheliometer
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Conversion of spectral
distribution function

F(T)=[1,(~T)dv

0]

rF(T):J'Il(/l,T)d/I

C d
V(ﬂ) — z Hint: compute é



Dimensional analysis

1, (v, T)] = —

m*Hz

| (v,T)=Vv*T"c%ks

kg =1.38x107%° 2
K



Radiance /J m < sr-t
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Rayleigh-Jeans law

2
|V(v,T)=2L2kBT
C

c 2v° ¢
I}L(/l,T):IV(v,T)/12 = 7

KgT

2C
— ? kBT



Visible spectrum: most of energy
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Infrared: 44 law
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Radio:
Interesting
break

e Clue about hot
corona

 Brightness
temperature

FLUX DENSITY [wWm’Hz'

S(N) ~ 2mckTA Y (rg /A)?
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“Gray body” at short wavelengths

Page 78 of
Knipp (2011)
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Internal structure of the Sun

 Seeing deeper
— Different wavelengths
— Ca, Fe lines (slightly higher up)
— Infrared (slightly deeper)

» Helioseismology
* Neutrinos

* Theory (depends on Y and mixing length)
— X+Y+Z=1

22



Dependence on Y

 Solve time-dependent stellar structure egns

 Produce more Y
InL=InLs+a(Yy— Yos) + bla—ap)

Inr=Inrg +c(Yo — Yog) +dla—ag) ,

R and L grow (faint sun paradox)

Oln L oln L
= — 8.0 b= — (.04
= oy, da
o= 2nr o g=2mr _ 13

6‘11*;. 6(2}: 23



More on intensity

/A
depends also
I Vv (X, n, t) on direction

for each ray path...

di AV =—px (1 —
= (l,-s,)  Meen(os)
S

or

dIV . I _S with d’Z'V :—IOKVdS
Ty 1% .
d T optical depth



3. A Not-So-Ordinary Differential Equation. Consider a one-dimensional “slab™ of gas that starts at x = ()
and ends at x = D, and 1s surrounded by empty space. A ray of hght with intensity f;; hits the slab at x =0
and shines through 1t parallel to the x axis. Inside the slab, the intensity obeys

.t'”_ S5-I
E—EE.

where «v and 5 are constants.

(a) Solve this equation for /{x) at all points between x = 0 and x = L.
(b) Define the quantity = al. Give an approximate solution for the “emergent intensity” /(1)) under
the three limuting cases:
o T 1.
e T3 ]land S = f:]-
e 7% ] and § = fu-
(c) Each of the three above cases matches with one of the following three physical analogies. Which do
you think corresponds to which. and why?
¢ Shining a flashlight through a piece of dark smoky quartz.
o Shining a flashlight through the bright flame of a welder’'s torch.
e Shining a flashlight through a glass window pane.
Hinr: The quantity = can be thought ot as the “opucal depth™ or opagueness of the slab—i.e., how ethciently

does the gas absorb (or otherwise eliminate) the mmcoming beam. The quantity 5 1s a "source function™ that
describes how the gas in the slab generates its own light.



