Eddington approximation
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In lecture 26, page 4, we derived the solution to the Eddington approximation as

I(rop) = 4 F (T4 3+ 1), (1)
where F' is the flux. The first three moments are
1 1
J(7) Z%/_II(T,u)duzﬁFé/_l (F+ ) +pldu=2F(r+2), (2)
1 1
H(T)Z%/_ll(ﬂﬂ)uduzﬁF%/_l[(T+§)u+;ﬂ]dﬂzﬁF (3)

1 ‘ 1
K(r) = %/1[<T,u)u2du= ﬁF%/_l [+t du=LF(r+2), (4

Thus, we see that 3K (1) = J(7) = (3/4w)F (7+3%) for all 7 and J(0) = 2H (7). In thermal
equilibrium, the source function is always equal to the mean intensity, i.e., S(7) = J(7).

Comparison with the formal solution
In Homework 2(b), we verified that
T0 ’
(1) = (o, p) e~ 0=t / S(r') e~ g (5)

which is known as the formal solution of the radiative transfer equation (see Stix, p. 150).
We are now interested in two special cases: (i) upward propagating rays (u > 0) that
receive radiation from all the way down to 79 — oo, and (ii) downward propagating rays
(1 < 0) that receive radiation from all the way up to 7o = 0 with (7, u) = 0, i.e., there
is no illumination from the top. Thus, we have

I(T,p) = e™/* /OO S(rYye /" dr' /u (for upward rays, u > 0), (6)
0 /
I(t,p) = 67/“/ S(rYe ™M dr' ju (for downward rays, p < 0). (7)
Inserting now the Eddington solution, S(7) = J(7) = (3/4m)F (7 + 2), we find*
I(r,p) = (3/4m) F (T + 5+ p) (for p > 0), (8)
I(r,p) = B/4m)F (T + 5 + ) = (5 +p) "] (for p < 0). (9)

so it agrees with the solution to the Eddington approximation exept for an additional term,
—(% + ) e™/* for the downward propagating rays; see Fig. 1. Without this “correction
term”, Ig, = I(7,—1) would actually become negative for 7 < 1/3, which is unphysical.
With the correction term included, we have for = —1

I4n/[(3/4m)F) =T — % + %6_7 =7 %(1 —e )T — %’7‘ =27/3 (for 7 —0). (10)

'Details regarding the derivation are not relevant now, but the calculation is similar to that in the
key to Homework 2, problem 1.
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Figure 1: Linear and logarithmic representations of the 7 dependencies of the intensities
of upward (/,p, red) and downward (/a,, blue) propagating rays, compared with the mean
intensity J (black). The solution to the Eddington approximation is shown in dashed.
Here, (3/4m)F =1 is assumed.

Remarks regarding Homework 5, problem 1

(a) the expression for I, = I(7,—1) is given in Eq. (10) as Ig, o< 7 — 5(1 —e™7). The
expression for I,,, = I(7,+1) is even simpler.

(b) the relevant expression for 7 =0 is just I(u) = 2F (3 + p) = 3H (3 + p).

(c) the result of a numerical integration is shown in Fig. 2 as a function of 7. For 7 = 0,
the integration is quite straightforward.

(d) the results can be read off Fig. 2, but here you are supposed to compute actual
values. [Under (d), it should of course read “From your answer to part (c), ...]
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Figure 2: Eddington approximation at different optical depth 7.
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