ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 2: KEY (Due Fri., Sept 23, 2016) September 7, 2016, Axel Brandenburg

1. MRI with inclined field.

(a)

Show that the MRI with an inclined field, By = (0, Boy, Bo-) and a spatial dependence
of all variables only in the z direction is given by the following eigenvalue problem:
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Expand the matrix governing the eigenvalue problem and discuss the solutions To
snnphfy the notation, define the two Alfvén frequencies w3 Ay = = k*v% and w3, = k?v3,
with v3 = B2, /(0po) and va being the Alfvén velocity. as well as the acoustic frequency
w? = k%c. Begin by discussing special cases: verify that the usual MRI solution is
recovered for By, = 0.

Next, discuss Bg, # 0 and either (i) By, = Q@ =5 =0, (ii) 2 = § = 0 with By, # 0,
(iii) S = 0 with 2 # 0 and By, # 0, and finally the case (iv) in which neither S, €, nor
By, vanish,

Compute solutions of the full problem numerically. Plot first o2 as a function of the
inclination 6 of the field By = By(0,sinf,cosf) for @ = S = 0 and ¢ = 1 and (i)
va = 0.7, (ii) va = 1, (i) va = 2.

In the presence of rotation and shear, the MHD equations for the departure from the
shear flow u, the magnetic field B, and the density p becomes
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Let us here, for simplicity, consider an isothermal equation of state, i.e., P = pcg, where
¢s = const. The equations can be readily linearized about uw = 0, B = By = const, and
p = po = const. For the following, we assume By = (0, Byy, Bo.) and V = (0,0, 0,). We
assume that all perturbations are proportional to e?**¥2. Thus we have
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Figure 1: Starting from the usual MRI case (here Q =1, S = —3/2, vpy = 0 and ¢; = 1), we
see that for decreasing va, the lower (fast magnetosonic) branch becomes essentially flat and turns
into what is called an inertial mode with —o? = Q. The slow magnetosonic branch also becomes
essentially flat, but with zero frequency.

Requiring the determinant to vanish yields the dispersion relation as

o0 + o wf + W}, + 2wi, + 2Q(S + 29)] (6)
+0? {QQ(S +20) (w? + wiy) + wi, (2w? + w%y + Wi, + 2QS)} (7)
Fwiwd, (Wi, +20Q8) =0 (8)

(b) We already know that for vy, = 0, the soundwaves decouple. In that case the full
MRI, as discussed in Handout 2, is recovered. In Fig. 1 we see the dispersion relation for
different values of vag. This case is interesting, because the Alfvén and fast magnetosonic
modes cross at a certain value of k.

(c) For va, # 0, however, soundwaves no longer decouple. An important limit is 2 = S =0,
in which case we can write

0% + o (Wi + Wi, + 2wh,) + Wi, (2w + Wi, + wi,) + wiwi, = 0. (9)

Inspecting again Eq. (5), we see that the first and fifth row and colum collapse into an
independent matrix whose determinant must vanish, i.e.
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Figure 2: MRI case (again with Q2 =1, S = —3/2, and ¢s = 1), but now with va, = 0.7 and 4
values of va,. Note the appearence of avoided crossings.
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Figure 3: Dependence on 6 for 2 =5 =0, ¢s = 1, and three values of va.

so the dispersion relation reads

(02 +wh.) [0 + 02 (W2 + w}, +wh.) +whaw?] =0 (11)

Note that the sound and fast magnetosonic branches cross; see Fig. 1. For finite values
of vay, these branches no longer cross. In such a case, one often talks about avoided
crossings. The onset of MRI is not affected, however; see Fig. 2.

(d) We now consider the dependence on . Fig. 3 shows the three modes for 2 = S = 0.
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Figure 4: Similar to Fig. 3, but for 2 = 0.2. Note that now the degeneracy between Alfvén
and magnetosonic modes is lifted even for the fast magnetosonic modes at § = 0° and the slow
magnetosonic modes at § = 90°.
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Figure 5: Similar to Fig. 3, but for 2 = 0.8 (upper row) and 2 = 1 (lower row). Note the dramatic
changes between these two cases.

Note that the degeneracy between Alfvén and magnetosonic modes is lifted, except for
the fast magnetosonic modes at § = 0° and the slow magnetosonic modes at 6 = 90°.
For finite values of v Ay, the degeneracy between Alfvén and magnetosonic modes is lifted
even for the fast magnetosonic modes at # = 0° and the slow magnetosonic modes at
0 = 90°; see Fig. 4. As we increase the value of 2, the 6 dependence changes dramatically
between all these case; see Fig. 5. Finally, for finite shear, we see the emergence of MRI
for certain angles; see Fig. 6.

2. Compute numerically the solutions of the anharmonic oscillator

¥ = —sinz (12)
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Figure 6: Similar to Fig. 5, but for @ =1 and S = —0.5 (upper row) and S = —1.5 (lower row).

both as z(t) and z(t), but also, for a set of different initial conditions, as parametric plots, in
the plane z(t) vs @(t).

Let me show you here the very nice illustration by Michelle Maiden in Figs. 7 and 8.

3. Compute the eigenfrequencies of the Rayleigh-Benard problem with free-slip boundary conditions
and negative values of Ra for parameters of your choice. Explain in words the physical
difference between positive and negative values of Ra.

See Fig. 9. For negative Ra, there are only oscillatory solutions that corresond to Brunt-
Vasala oscillations; see Fig. 9.
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Figure 9: Similar to the plot in Handout 3.



