ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 4 (Due Wed., Nov 2, 2016) November 29, 2016, Axel Brandenburg

1. Jeans instability with rotation. In the presence of rotation one has to take the Coriolis
force into account. The Euler linearized equations takes then the following form

Ip .
W = —poV - uy, (1)
aul 2
W = —Csvpl —2Q % uy — V(I)l, (2)
V2P, = 4nGp1, (3)

where Q = (0,0,9) is the rotation vector and €2 is the (constant) rotation rate. Subscripts 1
indicate small perturbations, and ¢ and pg are also assumed constant,

(a) Show that the linearized Fourier transformed equations can be written in matrix form

M;jq; =0 (4)
where
o ikzpo ikypo ik.po O p
ikec?/po o —2Q 0 ik, Ty
Mij = i]{?yc2/p0 20 g 0 iky , q= ﬁy . (5)
ik.c?/po 0 0 o ik, Uy
47G 0 0 0 k2 P

(b) Find the dispersion relation ¢ = o(k) assuming an isothermal equation of state, i.e.,
P/p = c? = const.

(¢) Refine the problem by considering a small amount of viscosity by writing the momentum
equation in the form

8(;;1 — VU = —c2Vp; — 2Q x u; — V&, (6)

How does the presence of ¥ modify the solution. You may solve the dispersion relation
numerically. Plot the results as functions of k, and k| separately. Here, k% = k2 + kz

(a) The first row corresponds to the continuity equation. The next 3 correspond to the
momentum equation. In here, there are two negative gradient terms (operating on p and
on ¢), corresponding to +ik on the left-hand side. The Coriolis term on the left-hand side

gives
0 Uy —2Qu,,
mml:(o)x(uy):(w%). 0
2Q 0 0

which explains the —2Q and 42 terms. Finally we have the V2®; = 47Gp; equation,
which becomes k2®; + 47Gp; = 0 and explains the terms in the last row,



(b) To find nontrivial solutions the determinant of M;; has to vanish. The determinant is
given by
k=2 det M = o 4 0*(c*k?® 4+ 402 — 4nGpo) + 4Q%K2(k? — 4nGpo) /K> =0 (8)

This is a quadratic equation in o2. Its solution for o? is

of = —1(c®k? +4Q% — 47Gpy) £ \/i((;?k? + 402 — 47Gpo)? — 402k2(c2k2 — 4G po) [ k2.

(9)
Consider limiting cases. (a) Q =0, so
o = —3(*k* — 4rGpo) + \/%(62’{32 — 47Gpop)?. (10)
ie., ol =0and 02 = —(c?k? — 47Gpy).
Q/og = 0.2 Q/o, = 0.4 Q/og = 0.6
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Figure 1: Dispersion relation showing 02/03 for three values of 2 as a function of either kﬁ (upper
row) or k2 (lower row). Here, 02 = Gpg and ko = 0¢/cs have been used for normalization.

In Figure 1 we plot o2 in units of 03 = 47Gpoy as a function of k? for different values
of Q2. Interestingly, the function o(k,) is not changed, but instead a new (horizontal)
branch appears which is independent of k. On the other hand, o(ky) shifts downward
with increasing values of ().

(c) Consider now the problem with viscosity and let us introduce & = o + vk?, so the matrix
takes the form

o ikzpo ikypo ik.po O p

ikoc2/pg & =20 0 ik, Gy
M;; = | ikyc?/po 29 G 0 ik, |, g=1|1 |- (11)

ik.c?/pop 0 0 o ik, i,

e 0 0 0 k2 P
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Figure 2: 2-D representation of the dispersion relation for three values of 2. The green line marks
the marginal line for onset.
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Figure 3: Dispersion relation showing o /o (instead of 02/03) for v = 0. Blue (red) denotes the real
(imaginary) part.

and compute the determinant,

detM = 4G {5 [20(kuhy — kziy)po + 5k2 po| + k. |ikpod? + 4%k po| } (12)

+ k2 { = (ik=c/ po) ik po (57 +497) + 5(06% + 5¢*k2 + 40%0) }

Simplify

detM

anGpy {—52K2 — k2 (52 +402) |
+ k2 {2 (52 + 40%) + (06° + 52*kE +40%05) |

(13)
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Figure 4: Dispersion relation showing o/oq for v = 0.2.
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Figure 5: Dispersion relation showing o/og for v = p = 0.2, where p is an artificial diffusion
coefficient in the continuity equation. Comparing with Figure 4, we see certain blue lines now
collapsing on top of each other.

or, dividing by k? and introducing a%; = 47 Gpy,

k~2detM = o2 (52 + 49%3/1&) + Pk (6% +49%) 4 063 + 522k +40%05.  (16)
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Figure 8: Similar to Figure 7, but now also with © = 0.05. The extended range of instability is not
reproduced with this trick!

Setting now det M to zero and simplifying further, we have

—6%0% + 402 (PKk? — 02) (K2 /K?) + 063 + 522k + 40206 = 0.
Reordering this gives

057 + 52(Pk? — 02) + 40205 + 403 (k? — o2) (K2/k?) = 0,

(17)

(18)

so we see that there are only two mixed terms. We also see that it readily reduces to



the simpler form when v = 0. Next, let us introduce A = c?k? — O'é, B = 40?, and
C = 40%(c*k? — o2) (k2/K?), we have

06° +6*A+06B+C =0. (19)

In Figure 4 we show a numerical solution obtained by solving the 5 x 5 matrix eigenvalue
problem numerically. The solution turns out to be close to one obtained by adding an
artificial diffusion coefficient in the continuity equation, which allows for an analytical
solution,

1/2
of = -—vk? + {f%(c2k2 +40% —4rGpo) + \/i(c%? +402 — 4nGpp)? — 402k2(2 K2 — 471'Gp0)/k2} . (20)

The result is shown in Figure 5.

2. Dimensional arguments. Use dimensional arguments to determine the form of the energy
spectrum E(k).

(a)

In two-dimensional turbulence the rate of enstrophy injection, § = %(uﬂ), is constant and
independent of wavenumber k. Use dimensional arguments to find the energy spectrum
E(k). [Hints: the energy spectrum is normalized so that [;° E(k)dk = 1(u?®) and E(k)
depends only 5 and k.]

Now consider hydromagnetic turbulence and assume that the spectrum can be written in

the form
E(k) = C (va€)k,

where C' is a dimensionless constant, v is the Alfvén speed, e (with dimension m?s~3)

the energy injection rate, and k the wavenumber. [Note that [ F(k)dk has the dimension
2 2

m°s— ]

Make the ansatz
E(k) = CBok°, (21)

use the facts that [E(k)] = m®s72, [3] = s73, and [k] = m™!, and balance the equation
for the dimensions m and s like so

m: +3 = +0a - 1b (22)
S: —2=—-3a—0b (23)

so we have 2 equations with the two unknowns a and b. The solution is here particularly
simple, so

b=-3, a=2/3. (24)
Inserting this into Equation (21) yields

E(k) = Cp*3k=3, (25)

Thus, we have a k=3 spectrum in 2-D.



(b) Again, make the ansatz
E(k) = C(vae)®k?, (26)

use the facts that [E(k)] = m®s™2, [vae] = m3s™*, and [k] = m™!, and balance the
equation for the dimensions m and s, so

m: +3=+43a—1b (27)
s: —2 = —4a —0b (28)

The solution is now
a=1/2, b=3a—-3=3/2—-3=-3/2. (29)

Inserting this into Equation (26) yields
E(k) = C(vae)/2k=/2. (30)

Thus, we expect a k~3/2 spectrum in MHD. This is called the Iroshnikov!-Kraichnan?
spectrum. It is nowadays superseded by the Goldreich-Sridhar® spectrum.

3. Hydrodynamic turbulence.

Take the kinetic energy spectrum of hydrodynamic turbulence to be of the form
E(k) = Cxe?/3k5/3, (31)
where Ck is the Kolmogorov constant.

(a) To calculate the length of the inertial range, assume that E(k) is finite only in the range
ki < k < kq. Thus, uyy,s and € are given by the two integrals

kq
Wl = | E(k)dk~ 3CxePk P, (32)

rms
kg

(Sl

ka 2 3 2/3,.4/3
= 2vk“E(k) dk = 5vCke” k", (33)
f

which are just the normalization condition of E(k) and the definition of the energy
dissipation, respectively. Here, v is the kinematic viscosity.

(b) Eliminating €, and writing the result in terms of the Reynolds number, show that

4/3
_ Urms 3 3/2 @
Re = ok ~ 3V3Cy (kf) : (34)

Thus, the length of the inertial range scales with the Reynolds number like kq/ks ~ Re?/4

Troshnikov, R. S., “Turbulence of a conducting fluid in a strong magnetic field,” Sov. Astron. 7, 566-571 (1964).
?Kraichnan, R. H., “Inertial-range spectrum of hydromagnetic turbulence,” Phys. Fluids 8, 1385-1387 (1965).
3Goldreich, P., & Sridhar, S., “Toward a theory of interstellar turbulence,” Astrophys. J. 438, 763-775 (1995).



(a) Using E(k) = Cke?/3k=%/3 we compute the integral over E(k) in the range k¢ < k < kq

and obtain
%ul%ms = I:d E(k)dk = ]:d Cre3k=3/3 dk = — %CK62/3/{:_2/3 Zi (35)

which gives
L2 = 30 @B 4 30k m 30k, (36)

because the first term is small (kq is large, but the exponent negative). Next, we compute

kq kq
e= [ 2wkE(k)dk= [ 2vCxe?PEY3dk = 2v 30k P13
ke kg

ka
Y e

f
SO

€= %1/ CK€2/3/€§/3 — %1/ CK62/3]€?/3 ~~ %I/CK62/3]{33/3, (38)
where we could this time skip the second part (k¢ is small by comparison and the exponent
positive).

(b) In Equation (38), € appears twice, so we first have

/3 = 3u0oxky?. (39)
From Equation (36) we have
Urms = /3Cke Pk 3, (40)
Inserting the expression for /3 yields
Urms = V/3Ck 3vCkky ki 2, (41)
SO Urms _ §\/gC,:),/2k4/3k;4/3 (42)
vk | 2 K %a Fr oo

which agrees with Equation (34). So the length of the inertial range is kq/ks =~ Re%/4,

4. The alpha effect. Consider the following evolution equation for the mean electromotive force
& in the form

E=1uxV x (ux B) (43)

(a) Show that
Ei = €ijk€kimEmnp TUjalunEP (44)

(b) Assume that B can be pulled outside the averages and define rank 2 and rank 3 tensors
such that
& = aipo + nippr,l (45)

(c) Show that

Qijp = €Ejnp TUjUn 5 — Einp TUjUn,j (46)
(d) Assume isotropy and define a = 38;pa,. Show that
o=—3iTw . (47)

where w =V x u.



(a) Consider the ith component and replace cross products by epsilons, so

Ei = T€ijkUj€kimOI€mnp UnBp = €;jk€kimEmnp TU;OunBp. (48)

Here, in the last step, we have just moved all the epsilons to the left.
(b) Writing

ujﬁlunﬁp = ujun,lgp + ujungp,l = ujumlﬁp + ujunﬁm (49)
where we have assumed that the product of averages is equal to the average of products.*
(c) The full part before the B), term is

aip = €ijk€klm€mnp Tu]'un,l. (52)
For the first two epsilons, we write €;jx€xm = 0i10jm — dimbji1, SO
ip = (0i10jm — Oim0j1) €mnp TUjUn | = €jnp TU;Un,; — Einp TU;Un, ;- (53)

(d) Isotropy means that a;p is proportional to an isotropic tensor. The only isotropic tensor
of rank 2 is J;,, soo we assume «;, = ad;y,. To compute o, we take the trace, i.e., we
compute a = %&paip and replace p by ¢, so

O = €jni TUjUp; — €ini TU;jUnp, ;- (54)

Here, the last term vanishes, ¢;,; = 0, because two indices are the same. Thus, we are left
with

_1 _1 1 a1
Q= 5€jn; TUjln; = 3TUEjn; Un,; = —5TUjEjin Ojly = — 3 TU;W;, (55)

and thus a = —éTw ~u. This shows that the (famous) a effect usually has to do with

kinetic helicity. This is, however, only true in the limit when the microphysical magnetic
diffusivity is negligible. If this is not the case, we essentially have 7 — (nk?)~! and the
k=2 leads to k2w — 1), where ) is the vectorial stream function, so u = V x ). This
is analogous to the magnetic vector potential; see the book by Krause & Rédler® for the
full story.

Incidently, the isotropic version of the magnetic diffusivity tensor is called the turbulent
magnetic diffusivity® and is given by 7, = %T’U,Q. When the microphysical magnetic

diffusivity is not negligible, this becomes 1y = %(7/77) (12 — ¢?), where ¢ is the scalar
potential of the velocity in the compressible case, which can lead to negative magnetic
diffusivities; see Ridler et al.”

4This is known as one of the Reynolds rules. The full set of Reynolds rules is
U1+U2:ﬁ1+ﬁ2, ﬁZU, ﬁZO, ﬁ1ﬁ2=ﬁ1ﬁ2, (50)
oU /ot = 0U Jot, OU /Ox; = OU /Ox;. (51)

Some of these properties are not shared by several other averages; for gaussian filtering U # U, and for spectral
filtering U U # U U, for example. Note that U = U implies that @ = 0.

*Krause, F., & Rédler, K.-H. Mean-field Magnetohydrodynamics and Dynamo Theory. Oxford: Pergamon (1980).

5 Analogously to «, one assumes that 7,,; in Equation (45) is proportional to an isotropic tensor of rank 3, and the
only one is €;p1, SO Nipi = Ni€ipr. To extract 7y, one computes 7y = %eipmipl.

"Réadler, K.-H., Brandenburg, A., Del Sordo, F., & Rheinhardt, M., “Mean-field diffusivities in passive scalar and
magnetic transport in irrotational flows,” Phys. Rev. E 84, 4 (2011).




5. The alpha squared dynamo. Consider the averaged induction equation in the form
0B —
E =V xE& + UV2B

and assume £ = aB [see part (b) of previous question].
(a) Assume a = const and assume solutions of the form B = By e***7t to show that

o=-nk*+ak

(56)

(57)

(b) Consider the periodic domain —7 < z < 7 and find the critical value of o above which
self-excited solutions are possible. Express « in terms of a non-dimensional parameter.

(c) Find the value of o (and its non-dimensional counterpart) for which o is maximized.

(d) Bonus question: find the eigenvectors By.

(a) For o = const (and of course n = const) we have a PDE with constant coefficients and

ikz+ot

can write B = Bge . We write this in matrix form, so

Bz —nk? —iak, ik, Bo:
o| Boy | = | iak; —nk?  —iak, Boy | . (58)
By, —iak, iak, —nk? By,
This is a standard eigenvalue problem. The dispersion relation follows from
o+ nk? iak, —iak,
det | —iak, o+nk® ok, =0 (59)
+iak, —iak, o+ nk?
and leads to
(o +nk?) (0 + nk?)? — a?k?| =0, (60)
with the three solutions
oo = —nk?, oL =—nk®+£|akl| (61)
The eigenfunction corresponding to the eigenvalue oy = —nk? is proportional to k, but

this solution is incompatible with solenoidality and has to be dropped. The two remaining

branches are shown in Figure 9.

(b) Marginally excited solutions Reo = 0. In this case, o is real, and so we have

0= —nkZi £ |kt -

crit

(62)

Here, kit = 0 is one solution, but it requires and infinitely large domain. For ke # O,

we have
Kexie = |al/n.

(63)

We have self-excited solutions for & < kqit. In a periodic domain —7 < z < m, the
largest scale corresponds to the wavenumber k£ = 1, so the critical value of o above which

self-excited solutions are possible is given by
Qerit =Nk =n for k= 1.
A non-dimensional parameter for « is

Coz = a/nka

10

(64)

(65)
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Figure 9: Dispersion relation for a? dynamo, where ke = a/n7.

The o(k) curve is an inverted parabola, so the maximum is given by do/dk = 0, so we
have maximum growth at

k= kmax = kcrit/2- (66)

Here we have
max(c) = o /4. (67)

Bonus question: To find the eigenvectors By, we consider the marginally excited state
with
o =0, =—-nk®+ ak. (68)

and assume positive a and k, so
ak ik, —iak, By,
—iak, ok ik, By, | =0. (69)
+Hak, —iak, ak By,
We can normalize the eigenvector such that By, = 1, for example, so we have
ak ik, —iak, 1
—iak, ak ik, By, | =0. (70)
+Hak, —iak, ak By,

so we have 2 unknowns for the remaining two equations, so in matrix form we have

ak  iaky\ (Boy\ [ iak.
<—iakm ak ) (BOz> a <—ioek:y) ’ (1)
The as cancel and we are left with kBy, = i(k; — k;Bo.) from the first row and
kBy. = i(kyBoy — ky) from the second, so

k?Bo, = i(k.k — kykBo,) = ik.k + ky (k. Boy — ky), (72)
so we have ek bk
INzR — Ry
Boy = f@g]? (73)

11



kR — kgky —kpkok —ik2k, . —kypkok — ik2ky, — ik, (k* — k2)
k"BOZ — lkl‘fk% - lky — k;z — k% - 1ky — kz — k‘%
(74)
» kypk.k — ik, k? kyk, —ikyk
_ T RaR R 1Ry T RgRy — 1Ry
kBOZ = k2 — k% or BOZ = W (75)
Renormalizing the eigenvector once more, we have
B Bos k? — k2
Boy | = | Boy | = | ik:k—kiky | = (76)
By, By, —kgk, —ikyk

This must then still satisfy the first row of Equation (69), i.e., kBo, + ik, Boy — ikyBo. = 0,
so let’s check:
k(k* — k2) + ik, (ik,k — kyky) — ik, (—kok, — ikyk) = (77)

= k(k* = k2) — k2k — ikokyks + ikykok, — kik = k(k* — k) — k2k — kJk =0, (78)

because k2 + k; + k2 = k2. Moreover,

B\ 1 Boo\ ., (1
(Boy) et (1) k2 or (Boy) T ( 0 ) k2. (79)

For k = k, there is a problem and we get zero. The general solution must be an eigenvector
of the curl operator, which I found once in an old paper of mine®, which I gave in the
form

kx(kxe)—ilk|(kxeée)

k21— (k- &)2/k2

(80)
Thus, we have
B Bos ko (ky + k) — (k:§ + k2) —ik(ky — k=)
Boy | = | Boy | = | ky(k: + ka) — (k2 + kazc) —ik(k, — k) (81)
By. Bo. ko(ke + ky) — (k2 4 k) — ik(ke — ky)
Test:

kko(ky + k2) — k(k; + k2) — ik (ky — k=)
+ik ey (ks + ki) — iko (K2 + k2) + kky (ky — ky) (82)
—ikyk: (ko + ky) + iky (k3 + k7)) — kky (ks — ky)

One sees quickly that the real terms cancel. For the imaginary terms it looks more messy,
so let’s write them down separately:

—k2(ky = k2) + koky (ks + ko) = k(K2 + k7)) — hyka (ke + ky) + ky (K2 + k7)) (83)
There are first two fully mixed terms, k.ky k., that cancel, so

—k?(ky — k2) + kokyks — ko (K2 + K2) — kykoky + ky (K2 + k) (84)

8Brandenburg, A., “The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic
turbulence,” Astrophys. J. 550, 824-840 (2001).

12



Next, the terms +k.kyk, and —kyk.k, can be subsumed in the
+ky (k2 + k2) and —k.(kZ + k2) terms, respectively, so that

—k*(ky — k) — k. k? + kyk? (85)

which cancels to zero.
Another possibility is to multiply the helicity matrix

Hij = (8i5 — ikpeijn)/ V2 (86)

with a vector perpendicular to k, i.e., k x &, where é is another arbitrary unit vector not
aligned with k. If we take & = (1,1,1)/v/3, then we have

. (k:y - k:)
kxeée=—k —k, (87)
V3 \ 1k —ky
SO
Bos ke(ky — k2) — ik (ks — k) + iky (ke — ky)
k| Boy | = [ k(kz — kp) — ko (ky — ky) + iz (ky — k) (88)
DBo- ke(ky — ky) — iy (ky — k2) + ik (ks — ky)

Let is check this one and insert into kBo, + ik, Boy — ikyBo. = 0, so

k2(ky — k) — ikok(ky — kg) + ikyk (ks — k) (89)
tikok(ky — k) + koky(ky — k) — k2(ky — ks) (90)
—ikyk((ke — ky) — ko (ky — k2) + kaky (ks — k). (91)

Here all the imaginary terms vanish, so we are left with
K2 (ky — k) + koka (ke — ky) — K2(ky — k2) — ki (ky — k) + koky (ks — kg). (92)
Here the fully mixed terms cancel, so
P (ky — k) + kokaka — k2 (ky — k) — ki (ky — k) — kokyks. (93)
Here, +k,kyky — kykyk, combines into —k2(k, — k), so we have

K (ky —ks) — (k2 + k2 + k) (ky — k) =0 (94)
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