
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 4 (Due Wed., Nov 2, 2016) November 29, 2016, Axel Brandenburg

1. Jeans instability with rotation. In the presence of rotation one has to take the Coriolis
force into account. The Euler linearized equations takes then the following form

∂ρ1

∂t
= −ρ0∇ · u1, (1)

∂u1

∂t
= −c2

s∇ρ1 − 2Ω × u1 − ∇Φ1, (2)

∇2Φ1 = 4πGρ1, (3)

where Ω = (0, 0, Ω) is the rotation vector and Ω is the (constant) rotation rate. Subscripts 1
indicate small perturbations, and cs and ρ0 are also assumed constant,

(a) Show that the linearized Fourier transformed equations can be written in matrix form

Mijqj = 0 (4)

where

Mij =















σ ikxρ0 ikyρ0 ikzρ0 0
ikxc2/ρ0 σ −2Ω 0 ikx

ikyc
2/ρ0 2Ω σ 0 iky

ikzc
2/ρ0 0 0 σ ikz

4πG 0 0 0 k2















, q =















ρ̂
ûx

ûy

ûz

Φ̂















. (5)

(b) Find the dispersion relation σ = σ(k) assuming an isothermal equation of state, i.e.,
P/ρ = c2

s = const.

(c) Refine the problem by considering a small amount of viscosity by writing the momentum
equation in the form

∂u1

∂t
− ν∇2u1 = −c2

s∇ρ1 − 2Ω × u1 − ∇Φ1, (6)

How does the presence of ν modify the solution. You may solve the dispersion relation
numerically. Plot the results as functions of kz and k⊥ separately. Here, k2

⊥
= k2

x + k2
y.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) The first row corresponds to the continuity equation. The next 3 correspond to the
momentum equation. In here, there are two negative gradient terms (operating on ρ and
on φ), corresponding to +ik on the left-hand side. The Coriolis term on the left-hand side
gives

2Ω × û1 =





0
0

2Ω



 ×




ux

uy

0



 =





−2Ωuy

+2Ωux

0



 . (7)

which explains the −2Ω and +2Ω terms. Finally we have the ∇2Φ1 = 4πGρ1 equation,
which becomes k2Φ1 + 4πGρ1 = 0 and explains the terms in the last row,
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(b) To find nontrivial solutions the determinant of Mij has to vanish. The determinant is
given by

k−2 detM = σ4 + σ2(c2k2 + 4Ω2 − 4πGρ0) + 4Ω2k2
z(c

2k2 − 4πGρ0)/k2 = 0 (8)

This is a quadratic equation in σ2. Its solution for σ2 is

σ2
± = −1

2(c2k2 + 4Ω2 − 4πGρ0) ±
√

1
4(c2k2 + 4Ω2 − 4πGρ0)2 − 4Ω2k2

z(c
2k2 − 4πGρ0)/k2.

(9)
Consider limiting cases. (a) Ω = 0, so

σ2
± = −1

2(c2k2 − 4πGρ0) ±
√

1
4(c2k2 − 4πGρ0)2. (10)

i.e., σ2
+ = 0 and σ2

− = −(c2k2 − 4πGρ0).

Figure 1: Dispersion relation showing σ2/σ2
0 for three values of Ω as a function of either k2

h (upper
row) or k2

v (lower row). Here, σ2
0 = Gρ0 and k0 = σ0/cs have been used for normalization.

In Figure 1 we plot σ2 in units of σ2
0 ≡ 4πGρ0 as a function of k2 for different values

of Ω2. Interestingly, the function σ(kv) is not changed, but instead a new (horizontal)
branch appears which is independent of k. On the other hand, σ(kh) shifts downward
with increasing values of Ω.

(c) Consider now the problem with viscosity and let us introduce σ̃ = σ + νk2, so the matrix
takes the form

Mij =















σ ikxρ0 ikyρ0 ikzρ0 0
ikxc2/ρ0 σ̃ −2Ω 0 ikx

ikyc
2/ρ0 2Ω σ̃ 0 iky

ikzc
2/ρ0 0 0 σ̃ ikz

4πG 0 0 0 k2















, q =















ρ̂
ûx

ûy

ûz

Φ̂















. (11)
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Figure 2: 2-D representation of the dispersion relation for three values of Ω. The green line marks
the marginal line for onset.

Figure 3: Dispersion relation showing σ/σ0 (instead of σ2/σ2
0) for ν = 0. Blue (red) denotes the real

(imaginary) part.

and compute the determinant,

detM = 4πG
{

−σ̃
[

2Ω(kxky − kxky)ρ0 + σ̃k2
⊥ρ0

]

+ ikz

[

ikzρ0σ̃
2 + 4Ω2ikzρ0

]}

(12)

+ k2
{

−(ikzc
2/ρ0) ikzρ0 (σ̃2 + 4Ω2) + σ̃(σσ̃2 + σ̃c2k2

⊥ + 4Ω2σ)
}

(13)

Simplify

detM = 4πGρ0

{

−σ̃2k2
⊥ − k2

z

(

σ̃2 + 4Ω2
)}

(14)

+ k2
{

c2k2
z (σ̃2 + 4Ω2) + (σσ̃3 + σ̃2c2k2

⊥ + 4Ω2σσ̃)
}

(15)
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Figure 4: Dispersion relation showing σ/σ0 for ν = 0.2.

Figure 5: Dispersion relation showing σ/σ0 for ν = µ = 0.2, where µ is an artificial diffusion
coefficient in the continuity equation. Comparing with Figure 4, we see certain blue lines now
collapsing on top of each other.

or, dividing by k2 and introducing σ2
G ≡ 4πGρ0,

k−2 detM = −σ2
G

(

σ̃2 + 4Ω2k2
z/k2

)

+ c2k2
z (σ̃2 + 4Ω2) + σσ̃3 + σ̃2c2k2

⊥ + 4Ω2σσ̃. (16)
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Figure 6: Zoom-in near onset; ν = 0. Otherwise like upper row of Figure 3.

Figure 7: Zoom-in near onset; ν = 0.05. Note that for finite rotation, viscosity extends to range of
instability.

Figure 8: Similar to Figure 7, but now also with µ = 0.05. The extended range of instability is not

reproduced with this trick!

Setting now detM to zero and simplifying further, we have

−σ̃2σ2
G + 4Ω2(c2k2 − σ2

G) (k2
z/k2) + σσ̃3 + σ̃2c2k2 + 4Ω2σσ̃ = 0. (17)

Reordering this gives

σσ̃3 + σ̃2(c2k2 − σ2
G) + 4Ω2σσ̃ + 4Ω2(c2k2 − σ2

G) (k2
z/k2) = 0, (18)

so we see that there are only two mixed terms. We also see that it readily reduces to
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the simpler form when ν = 0. Next, let us introduce A = c2k2 − σ2
G, B = 4Ω2, and

C = 4Ω2(c2k2 − σ2
G) (k2

z/k2), we have

σσ̃3 + σ̃2A + σσ̃B + C = 0. (19)

In Figure 4 we show a numerical solution obtained by solving the 5× 5 matrix eigenvalue
problem numerically. The solution turns out to be close to one obtained by adding an
artificial diffusion coefficient in the continuity equation, which allows for an analytical
solution,

σ±

±
= −νk2

±

{

−
1

2
(c2k

2 + 4Ω2
− 4πGρ0) ±

√

1

4
(c2k2 + 4Ω2 − 4πGρ0)2 − 4Ω2k2

z(c2k2 − 4πGρ0)/k2

}1/2

. (20)

The result is shown in Figure 5.

2. Dimensional arguments. Use dimensional arguments to determine the form of the energy
spectrum E(k).

(a) In two-dimensional turbulence the rate of enstrophy injection, β = d
dt〈ω2〉, is constant and

independent of wavenumber k. Use dimensional arguments to find the energy spectrum
E(k). [Hints: the energy spectrum is normalized so that

∫

∞

0 E(k) dk = 1
2〈u2〉 and E(k)

depends only β and k.]

(b) Now consider hydromagnetic turbulence and assume that the spectrum can be written in
the form

E(k) = C (vAǫ)akb,

where C is a dimensionless constant, vA is the Alfvén speed, ǫ (with dimension m2 s−3)
the energy injection rate, and k the wavenumber. [Note that

∫

E(k)dk has the dimension
m2 s−2.]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Make the ansatz
E(k) = Cβakb, (21)

use the facts that [E(k)] = m3 s−2, [β] = s−3, and [k] = m−1, and balance the equation
for the dimensions m and s like so

m : +3 = +0a − 1b (22)

s : −2 = −3a − 0b (23)

so we have 2 equations with the two unknowns a and b. The solution is here particularly
simple, so

b = −3, a = 2/3. (24)

Inserting this into Equation (21) yields

E(k) = Cβ2/3k−3. (25)

Thus, we have a k−3 spectrum in 2-D.
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(b) Again, make the ansatz
E(k) = C(vAǫ)akb, (26)

use the facts that [E(k)] = m3 s−2, [vAǫ] = m3 s−4, and [k] = m−1, and balance the
equation for the dimensions m and s, so

m : +3 = +3a − 1b (27)

s : −2 = −4a − 0b (28)

The solution is now

a = 1/2, b = 3a − 3 = 3/2 − 3 = −3/2. (29)

Inserting this into Equation (26) yields

E(k) = C(vAǫ)1/2k−3/2. (30)

Thus, we expect a k−3/2 spectrum in MHD. This is called the Iroshnikov1–Kraichnan2

spectrum. It is nowadays superseded by the Goldreich–Sridhar3 spectrum.

3. Hydrodynamic turbulence.

Take the kinetic energy spectrum of hydrodynamic turbulence to be of the form

E(k) = CKǫ2/3k−5/3, (31)

where CK is the Kolmogorov constant.

(a) To calculate the length of the inertial range, assume that E(k) is finite only in the range
kf ≤ k ≤ kd. Thus, urms and ǫ are given by the two integrals

1
2u2

rms =

∫ kd

kf

E(k) dk ≈ 3
2CKǫ2/3k

−2/3
f , (32)

ǫ =

∫ kd

kf

2νk2E(k) dk ≈ 3
2νCKǫ2/3k

4/3
d , (33)

which are just the normalization condition of E(k) and the definition of the energy
dissipation, respectively. Here, ν is the kinematic viscosity.

(b) Eliminating ǫ, and writing the result in terms of the Reynolds number, show that

Re =
urms

νkf
≈ 3

2

√
3 C

3/2
K

(

kd

kf

)4/3

. (34)

Thus, the length of the inertial range scales with the Reynolds number like kd/kf ≈ Re3/4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1Iroshnikov, R. S., “Turbulence of a conducting fluid in a strong magnetic field,” Sov. Astron. 7, 566-571 (1964).
2Kraichnan, R. H., “Inertial-range spectrum of hydromagnetic turbulence,” Phys. Fluids 8, 1385-1387 (1965).
3Goldreich, P., & Sridhar, S., “Toward a theory of interstellar turbulence,” Astrophys. J. 438, 763-775 (1995).
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(a) Using E(k) = CKǫ2/3k−5/3, we compute the integral over E(k) in the range kf ≤ k ≤ kd

and obtain

1
2u2

rms =

∫ kd

kf

E(k) dk =

∫ kd

kf

CKǫ2/3k−5/3 dk = − 3
2CKǫ2/3k−2/3

∣

∣

∣

kd

kf

(35)

which gives

1
2u2

rms = −3
2CKǫ2/3k

−2/3
d + 3

2CKǫ2/3k
−2/3
f ≈ 3

2CKǫ2/3k
−2/3
f , (36)

because the first term is small (kd is large, but the exponent negative). Next, we compute

ǫ =

∫ kd

kf

2νk2E(k) dk =

∫ kd

kf

2ν CKǫ2/3k1/3 dk = 2ν 3
4CKǫ2/3k4/3

∣

∣

∣

kd

kf

, (37)

so
ǫ = 3

2ν CKǫ2/3k
4/3
d − 3

2ν CKǫ2/3k
4/3
f ≈ 3

2νCKǫ2/3k
4/3
d , (38)

where we could this time skip the second part (kf is small by comparison and the exponent
positive).

(b) In Equation (38), ǫ appears twice, so we first have

ǫ1/3 = 3
2νCKk

4/3
d . (39)

From Equation (36) we have

urms =
√

3CKǫ1/3k
−1/3
f , (40)

Inserting the expression for ǫ1/3 yields

urms =
√

3CK
3
2νCKk

4/3
d k

−1/3
f , (41)

so
urms

νkf
= 3

2

√
3 C

3/2
K k

4/3
d k

−4/3
f , (42)

which agrees with Equation (34). So the length of the inertial range is kd/kf ≈ Re3/4.

4. The alpha effect. Consider the following evolution equation for the mean electromotive force
E in the form

E = τu × ∇ × (u × B) (43)

(a) Show that

Ei = ǫijkǫklmǫmnp τuj∂lunBp (44)

(b) Assume that B can be pulled outside the averages and define rank 2 and rank 3 tensors
such that

Ei = αipBp + ηiplBp,l (45)

(c) Show that
αip = ǫjnp τujun,i − ǫinp τujun,j (46)

(d) Assume isotropy and define α = 1
3δipαip. Show that

α = −1
3τω · u. (47)

where ω = ∇ × u.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Consider the ith component and replace cross products by epsilons, so

Ei = τǫijkujǫklm∂lǫmnp unBp = ǫijkǫklmǫmnp τuj∂lunBp. (48)

Here, in the last step, we have just moved all the epsilons to the left.

(b) Writing

uj∂lunBp = ujun,lBp + ujunBp,l = ujun,lBp + ujunBp,l (49)

where we have assumed that the product of averages is equal to the average of products.4

(c) The full part before the Bp term is

αip = ǫijkǫklmǫmnp τujun,l. (52)

For the first two epsilons, we write ǫijkǫklm = δilδjm − δimδjl, so

αip = (δilδjm − δimδjl) ǫmnp τujun,l = ǫjnp τujun,i − ǫinp τujun,j . (53)

(d) Isotropy means that αip is proportional to an isotropic tensor. The only isotropic tensor
of rank 2 is δip, soo we assume αip = αδip. To compute α, we take the trace, i.e., we
compute α = 1

3δipαip and replace p by i, so

α = ǫjni τujun,i − ǫini τujun,j . (54)

Here, the last term vanishes, ǫini = 0, because two indices are the same. Thus, we are left
with

α = 1
3ǫjni τujun,i = 1

3τujǫjni un,i = −1
3τujǫjin ∂iun = −1

3τujωj , (55)

and thus α = −1
3τω · u. This shows that the (famous) α effect usually has to do with

kinetic helicity. This is, however, only true in the limit when the microphysical magnetic
diffusivity is negligible. If this is not the case, we essentially have τ → (ηk2)−1 and the
k−2 leads to k−2ω → ψ, where ψ is the vectorial stream function, so u = ∇ × ψ. This
is analogous to the magnetic vector potential; see the book by Krause & Rädler5 for the
full story.

Incidently, the isotropic version of the magnetic diffusivity tensor is called the turbulent

magnetic diffusivity6 and is given by ηt = 1
3τu2. When the microphysical magnetic

diffusivity is not negligible, this becomes ηt = 1
3(τ/η) (ψ2 − φ̂2), where φ̂ is the scalar

potential of the velocity in the compressible case, which can lead to negative magnetic
diffusivities; see Rädler et al.7

4This is known as one of the Reynolds rules. The full set of Reynolds rules is

U 1 + U 2 = U 1 + U 2, U = U , Uu = 0, U 1 U 2 = U 1 U 2, (50)

∂U/∂t = ∂U/∂t, ∂U/∂xi = ∂U/∂xi. (51)

Some of these properties are not shared by several other averages; for gaussian filtering U 6= U , and for spectral

filtering U U 6= U U , for example. Note that U = U implies that u = 0.
5Krause, F., & Rädler, K.-H. Mean-field Magnetohydrodynamics and Dynamo Theory. Oxford: Pergamon (1980).
6Analogously to α, one assumes that ηipl in Equation (45) is proportional to an isotropic tensor of rank 3, and the

only one is ǫipl, so ηipl = ηtǫipl. To extract ηt, one computes ηt = 1

6
ǫiplηipl.

7Rädler, K.-H., Brandenburg, A., Del Sordo, F., & Rheinhardt, M., “Mean-field diffusivities in passive scalar and
magnetic transport in irrotational flows,” Phys. Rev. E 84, 4 (2011).
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5. The alpha squared dynamo. Consider the averaged induction equation in the form

∂B

∂t
= ∇ × E + η∇2B (56)

and assume E = αB [see part (b) of previous question].

(a) Assume α = const and assume solutions of the form B = B0 eikz+σt to show that

σ = −ηk2 ± αk (57)

(b) Consider the periodic domain −π < z < π and find the critical value of α above which
self-excited solutions are possible. Express α in terms of a non-dimensional parameter.

(c) Find the value of α (and its non-dimensional counterpart) for which σ is maximized.

(d) Bonus question: find the eigenvectors B0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) For α = const (and of course η = const) we have a PDE with constant coefficients and
can write B = B0 eikz+σt. We write this in matrix form, so

σ





B0x

B0y

B0z



 =





−ηk2 −iαkz iαky

iαkz −ηk2 −iαkx

−iαky iαkx −ηk2









B0x

B0y

B0z



 . (58)

This is a standard eigenvalue problem. The dispersion relation follows from

det





σ + ηk2 iαkz −iαky

−iαkz σ + ηk2 iαkx

+iαky −iαkx σ + ηk2



 = 0 (59)

and leads to
(σ + ηk2)

[

(σ + ηk2)2 − α2k2
]

= 0, (60)

with the three solutions

σ0 = −ηk2, σ± = −ηk2 ± |αk|. (61)

The eigenfunction corresponding to the eigenvalue σ0 = −ηk2 is proportional to k, but
this solution is incompatible with solenoidality and has to be dropped. The two remaining
branches are shown in Figure 9.

(b) Marginally excited solutions Reσ = 0. In this case, σ is real, and so we have

0 = −ηk2
crit ± |αkcrit|. (62)

Here, kcrit = 0 is one solution, but it requires and infinitely large domain. For kcrit 6= 0,
we have

kcrit = |α|/η. (63)

We have self-excited solutions for k < kcrit. In a periodic domain −π < z < π, the
largest scale corresponds to the wavenumber k = 1, so the critical value of α above which
self-excited solutions are possible is given by

αcrit = ηk = η for k = 1. (64)

A non-dimensional parameter for α is

Cα = α/ηk, (65)
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Figure 9: Dispersion relation for α2 dynamo, where kcrit = α/ηT.

(c) The σ(k) curve is an inverted parabola, so the maximum is given by dσ/dk = 0, so we
have maximum growth at

k = kmax = kcrit/2. (66)

Here we have
max(σ) = α2/4η. (67)

(d) Bonus question: To find the eigenvectors B0, we consider the marginally excited state
with

σ = σ+ = −ηk2 + αk. (68)

and assume positive α and k, so





αk iαkz −iαky

−iαkz αk iαkx

+iαky −iαkx αk









B0x

B0y

B0z



 = 0. (69)

We can normalize the eigenvector such that B0x = 1, for example, so we have





αk iαkz −iαky

−iαkz αk iαkx

+iαky −iαkx αk









1
B0y

B0z



 = 0. (70)

so we have 2 unknowns for the remaining two equations, so in matrix form we have

(

αk iαkx

−iαkx αk

) (

B0y

B0z

)

=

(

iαkz

−iαky

)

. (71)

The αs cancel and we are left with kB0y = i(kz − kxB0z) from the first row and
kB0z = i(kxB0y − ky) from the second, so

k2B0y = i(kzk − kxkB0z) = ikzk + kx(kxB0y − ky), (72)

so we have

B0y =
ikzk − kxky

k2 − k2
x

, (73)
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and

kB0z = ikx
ikzk − kxky

k2 − k2
x

− iky =
−kxkzk − ik2

xky

k2 − k2
x

− iky =
−kxkzk − ik2

xky − iky(k
2 − k2

x)

k2 − k2
x

(74)
so

kB0z =
−kxkzk − ikyk

2

k2 − k2
x

or B0z =
−kxkz − ikyk

k2 − k2
x

. (75)

Renormalizing the eigenvector once more, we have





B0x

B0y

B0z



 →




B0x

B0y

B0z



 =





k2 − k2
x

ikzk − kxky

−kxkz − ikyk



 = (76)

This must then still satisfy the first row of Equation (69), i.e., kB0x +ikzB0y− ikyB0z = 0,
so let’s check:

k(k2 − k2
x) + ikz(ikzk − kxky) − iky(−kxkz − ikyk) = (77)

= k(k2 − k2
x) − k2

zk − ikxkykz + ikykxkz − k2
yk = k(k2 − k2

x) − k2
zk − k2

yk = 0, (78)

because k2
x + k2

y + k2
z = k2. Moreover,





B0x

B0y

B0z





if k=kz=





1
i
0



 k2
z or





B0x

B0y

B0z





if k=ky
=





1
0
−i



 k2
y. (79)

For k = kx there is a problem and we get zero. The general solution must be an eigenvector
of the curl operator, which I found once in an old paper of mine8, which I gave in the
form

k × (k × ê) − i|k|(k × ê)

2k2
√

1 − (k · ê)2/k2
. (80)

Thus, we have





B0x

B0y

B0z



 →




B0x

B0y

B0z



 =





kx(ky + kz) − (k2
y + k2

z) − ik(ky − kz)
ky(kz + kx) − (k2

z + k2
x) − ik(kz − kx)

kz(kx + ky) − (k2
x + k2

y) − ik(kx − ky)



 (81)

Test:

kkx(ky + kz) − k(k2
y + k2

z) − ik2(ky − kz)

+ikzky(kz + kx) − ikz(k
2
z + k2

x) + kkz(kz − kx) (82)

−ikykz(kx + ky) + iky(k
2
x + k2

y) − kky(kx − ky)

One sees quickly that the real terms cancel. For the imaginary terms it looks more messy,
so let’s write them down separately:

−k2(ky − kz) + kzky(kz + kx) − kz(k
2
z + k2

x) − kykz(kx + ky) + ky(k
2
x + k2

y) (83)

There are first two fully mixed terms, kxkykz, that cancel, so

−k2(ky − kz) + kzkykz − kz(k
2
z + k2

x) − kykzky + ky(k
2
x + k2

y) (84)

8Brandenburg, A., “The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic
turbulence,” Astrophys. J. 550, 824-840 (2001).
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Next, the terms +kzkykz and −kykzky can be subsumed in the
+ky(k

2
x + k2

y) and −kz(k
2
z + k2

x) terms, respectively, so that

−k2(ky − kz) − kzk
2 + kyk

2 (85)

which cancels to zero.

Another possibility is to multiply the helicity matrix

Hij = (δij − ik̂kǫijk)/
√

2 (86)

with a vector perpendicular to k, i.e., k × ê, where ê is another arbitrary unit vector not
aligned with k. If we take ê = (1, 1, 1)/

√
3, then we have

k × ê =
1√
3





ky − kz

kz − kx

kx − ky



 (87)

so

k





B0x

B0y

B0z



 =





k(ky − kz) − ikz(kz − kx) + iky(kx − ky)
k(kz − kx) − ikx(kx − ky) + ikz(ky − kz)
k(kx − ky) − iky(ky − kz) + ikx(kz − kx)



 (88)

Let is check this one and insert into kB0x + ikzB0y − ikyB0z = 0, so

k2(ky − kz) − ikzk(kz − kx) + ikyk(kx − ky) (89)

+ikzk(kz − kx) + kzkx(kx − ky) − k2
z(ky − kz) (90)

−ikyk((kx − ky) − k2
y(ky − kz) + kxky(kz − kx). (91)

Here all the imaginary terms vanish, so we are left with

k2(ky − kz) + kzkx(kx − ky) − k2
z(ky − kz) − k2

y(ky − kz) + kxky(kz − kx). (92)

Here the fully mixed terms cancel, so

k2(ky − kz) + kzkxkx − k2
z(ky − kz) − k2

y(ky − kz) − kxkykx. (93)

Here, +kzkxkx − kxkykx combines into −k2
x(ky − kz), so we have

k2(ky − kz) − (k2
z + k2

x + k2
y)(ky − kz) = 0 (94)
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