
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 5 (Due Fri. [not Wed.], Nov 18, 2016) November 4, 2016, Axel Brandenburg

1. The Sine–Gordon equation is given by

φ,tt − φ,xx + sin φ = 0. (1)

Verify (numerically or analytically) that

φ(x, t) = 4 arctan ea(x−ct) (2)

with γ = (1 − c2)−1/2 is a solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We calculate analytically φ,tt and φ,xx and insert. We use d(arctanx)/dx = 1/(1 + x2).

(a) We begin with the time derivatives:

φ,t = − 4acea(x−ct)

1 + e2a(x−ct)
. (3)

Use product or quotient rule, so

φ,tt =
4a2c2ea(x−ct)

1 + e2a(x−ct)
− 8a2c2e3a(x−ct)

[1 + e2a(x−ct)]2
. (4)

Put on the same denominator, so

φ,tt =
4a2c2ea(x−ct)[1 + e2a(x−ct)] − 8a2c2e3a(x−ct)

[1 + e2a(x−ct)]2
, (5)

or

φ,tt =
4a2c2ea(x−ct) − 4a2c2e3a(x−ct)

[1 + e2a(x−ct)]2
= 4a2c2ea(x−ct) 1 − e2a(x−ct)

[1 + e2a(x−ct)]2
. (6)

Computing φ,xx works analogously, except that the −ac prefactor from the inner derivative
is replaced by just a, and a2c2 is replaced by a2, so

φ,x =
4aea(x−ct)

1 + e2a(x−ct)
, (7)

φ,xx =
4a2ea(x−ct)

1 + e2a(x−ct)
− 8a2e3a(x−ct)

[1 + e2a(x−ct)]2
. (8)

Put on the same denominator, so

φ,xx =
4a2ea(x−ct)[1 + e2a(x−ct)] − 8a2e3a(x−ct)

[1 + e2a(x−ct)]2
, (9)

or

φ,xx =
4a2ea(x−ct) − 4a2e3a(x−ct)

[1 + e2a(x−ct)]2
= 4a2ea(x−ct) 1 − e2a(x−ct)

[1 + e2a(x−ct)]2
. (10)

Thus, we have

φ,tt − φ,xx = 4a2(1 − c2)ea(x−ct) 1 − e2a(x−ct)

[1 + e2a(x−ct)]2
. (11)
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(b) To deal with this sinφ term, where φ is itself an arctan, let us write A = tanα, so
α = arctanA. In the end, we want the sinα, so let us therefore express the tangens in
terms of sine (and cosine) functions, so

A2 ≡ tan2 α =
sin2 α

cos2 α
=

sin2 α

1 − sin2 α
, (12)

so A2(1 − sin2 α) = sin2 α or A2 = (1 + A2) sin2 α, and therefore

sinα =
A√

1 + A2
. (13)

However, there is a factor 4 in Equation (2), so we cannot apply this trick directly. Instead
of working with a factor of 4, let us first work with a factor of 2 by using the formula
sin 2α = 2 sin α cos α, or

sin φ = 2 sin
φ

2
cos

φ

2
. (14)

Using this again, and also cos 2α = 1 − 2 sin2 α, we have

sinφ = 4 sin
φ

4
cos

φ

4

(

1 − 2 sin2 φ

4

)

. (15)

We can now use Equation (13), because φ/4 corresponds to α, but then we also need a
corresponding expression for cosα. We can write A2 also as A2 = (1 − cos2 α)/ cos2 α or
A2 cos2 α = 1 − cos2 α, and therefore cosα = 1/

√
1 + A2. Thus, Equation (15) becomes

sin φ = 4 sinα cos α
(

1 − 2 sin2 α
)

= 4
A√

1 + A2

1√
1 + A2

(

1 − 2
A2

1 + A2

)

, (16)

or

sinφ =
4A

1 + A2

(

1 − 2A2

1 + A2

)

= 4A
1 + A2 − 2A2

(1 + A2)2
= 4A

1 − A2

(1 + A2)2
. (17)

Equation (17) looks similar to Equation (11), so we put

A = ea(x−ct) (18)

and find
φ,tt − φ,xx = −a2(1 − c2) sin φ. (19)

Thus, Equation (1) is obeyed if a2(1−c2) = 1. In other words, the propagation speed c depends
(not surprisingly) on a. Writing 1 − c2 = 1/a2, or c2 = 1 − 1/a2 = (a2 − 1)/a2. To have real
values of c, we better have a > 1, and then

c = (1 − 1/a2)1/2. (20)

In Figure 1 we show c versus a, so it is clear that larger amplitudes lead to faster propagation.
This is similar to what is found for other soliton solutions.

2. Finite difference formula. Finite derivative formulae for the nth derivative can generally
be written as

dnfi

dxn
=

1

δxn

N
∑

j=−N

c
(n)
j fi+j , (21)
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Figure 1: Plot of c versus a, so larger amplitudes lead to faster propagation.

with coefficient c
(n)
j given in Table 1 for schemes of order N .

To derive the coefficients c
(n)
j , consider the Taylor expansion for fi+j ≡ fi(jδx),

fi+j = fi + jδxf ′

i + 1
2j2δx2f ′′

i + 1
3!j

3δx3f ′′′

i + 1
4!j

4δx4f iv
i + 1

5!j
5δx5fv

i + ... (22)

(a) Write the Taylor expansion for fi+j as matrix equation

fi+j = Mjk

(

d

dx

)k

fi, (23)

where Mjk = (jδx)j is a matrix whose rank depends on the order of the scheme. Invert the
matrix to compute the coefficients in front of the fi+j for the finite difference derivative

(

d

dx

)k

fi = (Mjk)
−1 fi+j (24)

and verify the values given in Table 1.

Table 1: Coefficients c
(n)
j ≡ a

(n)
j /b(n)

N n b(n) a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 a

(n)
4 a

(n)
5

10 1 2520 0 2100 −600 150 −25 2
8 1 840 0 672 −168 32 −3
6 1 60 0 45 −9 1
4 1 12 0 8 −1
2 1 2 0 1

10 2 25200 −73766 42000 −6000 1000 −125 8
8 2 5040 −14350 8064 −1008 128 −9
6 2 180 −490 270 −27 2
4 2 12 −30 16 −1
2 2 1 −2 1
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(b) Extend the table to compute the coefficients for the third derivative with a stencil width
5.

(c) What is the error of these schemes, i.e., what is the power of δx with which it scales,
what is the leading derivative, and what are the coefficients. One or two examples of your

choice will be enough.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. I computed the numbers in IDL, where I compute the numbers via

for i=0,N do begin

for j=0,N do begin

ii=i-.5*N

mat(i,j)=ii^j/factorial(j)

endfor

endfor

and then I inverted the matrix with m1=invert(mat) and printed the result. I tried a few
integer denominators to get the fraction.

4. Using the same method, the numbers for N = 3 have been computed; see the results below.

Table 2: Coefficients c
(n)
j ≡ a

(n)
j /b(n) for n = 3

N n b(n) a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 a

(n)
4 a

(n)
5

10 3 30240 0 −70098 52428 −14607 2522 −205
8 3 240 0 −488 338 −72 7
6 3 8 0 −13 8 −1
4 3 2 0 −2 1

5. When assembling the derivative with neighboring points using Equation (23), the low order
derivative terms in the Taylor expansion all cancel. The lowest one that does not cancel is
proportional to the δx to the power n, where n is the order of the scheme. It is then also
proportional to a higher derivative, whose order

is clear from dimensional arguments, for example for a 2nd-order scheme, to leading order,
the error in f ′ is proportional to the 3rd derivative, (δx)2 f

′′′

, and for f ′′ it is proportional to
the 4th derivative, (δx)4 f (iv). Likewise, for a 10th-order scheme, to leading order, the error
in f ′ is proportional to the 11th derivative, (δx)10 f (xi), and for f ′′ it is proportional to the
12th derivative, (δx)10 f (xii). To compute the coefficient in front of it, we simply add the
corresponding contributions (with the factors given in Table 1, that enter in Equation (24)).
We find:

(f ′)2nd = f ′ + 2
1

2δx

(δx)3

3!
f ′′′ = f ′ + 2

(δx)2

2 × 3!
f ′′′ = f ′ +

(δx)2

6
f ′′′. (25)

The factor of two accounts for the contributions from the left and the right. Next,

(f ′)4th = f ′ + 2
8 − 25

12δx

(δx)5

5!
f (v) = f ′ + 2

8 − 25

12 × 5!
(δx)4 f (v) = f ′ − 1

30
(δx)4 f (v). (26)
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Now that we get the hang of it, we’ll skip the intermediate step, so

(f ′)6th = f ′ + 2
45 − 9 × 27 + 37

60 × 7!
(δx)6 f (vii) = f ′ +

1

140
(δx)6 f (vii), (27)

(f ′)8th = f ′ + 2
672 − 168 × 29 + 32 × 39 − 3 × 49

840 × 9!
(δx)8 f (ix) = f ′ − 1

630
(δx)8 f (ix), (28)

(f ′)10th = f ′ + 2
2100 − 600 × 211 + 150 × 311 − 25 × 411 + 2 × 511

2520 × 11!
(δx)10 f (xi), (29)

where the coefficient is +1/2772. Note that in all these cases, the leading error is dispersive.
For the second derivative, the leading error is diffusive, but this is unimportant because the
diffusion caused by the 2nd derivative itself is more important. So, for f ′′ we find

(f ′′)2nd = f ′′ + 2
1

(δx)2
(δx)4

4!
f (iv) = f ′′ + 2

(δx)2

4!
f (iv) = f ′′ +

(δx)2

12
f (iv), (30)

(f ′′)4th = f ′′ + 2
16 − 26

12 × 6!
(δx)4 f (vi) = f ′′ − (δx)4

90
f (vi), (31)

(f ′′)6th = f ′′ + 2
270 − 27 × 28 + 2 × 38

180 × 8!
(δx)6 f (viii) = f ′′ +

(δx)6

560
f (viii), (32)

(f ′′)8th = f ′′ + 2
8064 − 1008 × 210 + 128 × 310 − 9 × 410

5040 × 10!
(δx)8 f (x) = f ′′ − (δx)8

3150
f (x), (33)

(f ′′)10th = f ′′ + 2
42000 − 6000 × 212 + 1000 × 312 − 125 × 412 + 8 × 512

25200 × 12!
(δx)10 f (xii), (34)

where the coefficient is +1/16632. This same scheme can be continued for the 3rd derivatives,

(f ′′′)2nd = f ′′′ + 2
−2 + 25

2 (δx)3
(δx)5

5!
f (v) = f ′′′ + 2

−2 + 25

2 × 5!
(δx)2 f (v) = f ′′′ +

1

4
(δx)2 f (v). (35)

(f ′′′)4th = f ′′′ + 2
−13 + 8 × 27 − 36

8 × 7!
(δx)4 f (vii) = f ′′′ − 294

7!
(δx)4 f (vii), (36)

where the prefactor reduces to −7/(4 × 5 × 6) ≈ −0.058, and so forth. The leading error is
thus proportional to the n + Nth derivative.

6. Second-next nearest neighbor shell model. In Handout 15b, a shell model with nearest
neighbors was presented. A shell model with second-next nearest neighbors allows us to
conserve two conservation laws. The models are sometimes called GOY models to acknowledge
the work of Gledzer, Ohkitani, and Yamada.1

(a) Show that the general form of such a model is

dun

dt
= ikn (Aun−2un−1 + Bun−1un+1 + Cun+1un+2)

∗ − νk2
nun. (37)

where kn = k0 2n is the wavenumber shell. The asterisk means complex conjugation.

1E. B. Gledzer, “System of hydrodynamic type admitting two quadratic integrals of motion,” Sov. Phys. Dokl. 18,
216 (1973). M. Yamada & K. Ohkitani, “Lyapunov spectrum of a model of two-dimensional turbulence,” Phys. Rev.

Lett. 60, 983-986 (1988).
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(b) Assume that both energy E = 1
2

∑ |un|2 and enstrophy Ξ = 1
2

∑

k2
n|un|2 are conserved,

and show that
A = − 1

10 . B = 1, C = −8
5 . (38)

(c) Next, assume that both energy E = 1
2

∑

u2
n and helicity H = 1

2

∑

(−1)nkn|un|2 are
conserved, and show that

A = 1
2 , B = 1, C = −4. (39)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) To obey any conservation law with second-nearest neighbors, we must consider all triples
that contribute in

∑

unNn(u, u). Here,

Nn(u, u) =
2

∑

i=−2

2
∑

i=−2

un+iun+j . (40)

Let us begin with a list of triples (n, i, j) that can contribute.

n=-2

(-2,-2,-2) (-2,-2,-1) (-2,-2, 0)

(-2,-1,-2) (-2,-1,-1) (-2,-1, 0)

(-2, 0,-2) (-2, 0,-1) (-2, 0, 0)

n=-1

(-1,-2,-2) (-1,-2,-1) (-1,-2, 0) (-1,-2, 1)

(-1,-1,-2) (-1,-1,-1) (-1,-1, 0) (-1,-1, 1)

(-1, 0,-2) (-1, 0,-1) (-1, 0, 0) (-1, 0, 1)

(-1, 1,-2) (-1, 1,-1) (-1, 1, 0) (-1, 1, 1)

n=0

( 0,-2,-2) ( 0,-2,-1) ( 0,-2, 0) ( 0,-2, 1) ( 0,-2, 2)

( 0,-1,-2) ( 0,-1,-1) ( 0,-1, 0) ( 0,-1, 1) ( 0,-1, 2)

( 0, 0,-2) ( 0, 0,-1) ( 0, 0, 0) ( 0, 0, 1) ( 0, 0, 2)

( 0, 1,-2) ( 0, 1,-1) ( 0, 1, 0) ( 0, 1, 1) ( 0, 1, 2)

( 0, 2,-2) ( 0, 2,-1) ( 0, 2, 0) ( 0, 2, 1) ( 0, 2, 2)

n=1

( 1,-1,-1) ( 1,-1, 0) ( 1,-1, 1) ( 1,-1, 2)

( 1, 0,-1) ( 1, 0, 0) ( 1, 0, 1) ( 1, 0, 2)

( 1, 1,-1) ( 1, 1, 0) ( 1, 1, 1) ( 1, 1, 2)

( 1, 2,-1) ( 1, 2, 0) ( 1, 2, 1) ( 1, 2, 2)

n=2

( 2, 0, 0) ( 2, 0, 1) ( 2, 0, 2)

( 2, 1, 0) ( 2, 1, 1) ( 2, 1, 2)

( 2, 2, 0) ( 2, 2, 1) ( 2, 2, 2)

Out of these many triples, there are all those that we used in the nearest neighbor model.
However, they all have a problem in that they violate the Liouville theorem, which states
that the phase space volume must be constant. This in turn means that ∂Nn(u, u)/∂un =
0, i.e., the Nn(u, u) should only contain terms with un±1 and un±2, but no un terms.
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Thus, having masked out the terms that are incompatible with the Liouville theorem, we
are left with the following set of triples:

n=-2

. . . . . .

. . . . . .

. . . . . .

(-2,-1,-1) (-2,-1, 0)*

(-2, 0,-1) (-2, 0, 0)

n=-1

. . . . . . . . .

(-1,-2,-2) (-1,-2, 0) (-1,-2, 1)

. . . . . . . . .

(-1, 0,-2)* (-1, 0, 0) (-1, 0, 1)

(-1, 1,-2) (-1, 1, 0) (-1, 1, 1)

n=0

( 0,-2,-2) ( 0,-2,-1)* ( 0,-2, 1) ( 0,-2, 2)

( 0,-1,-2) ( 0,-1,-1) ( 0,-1, 1) ( 0,-1, 2)

. . . . . . . . . . . .

( 0, 1,-2) ( 0, 1,-1) ( 0, 1, 1) ( 0, 1, 2)

( 0, 2,-2) ( 0, 2,-1) ( 0, 2, 1) ( 0, 2, 2)

n=1

( 1,-1,-1) ( 1,-1, 0) ( 1,-1, 2)

( 1, 0,-1) ( 1, 0, 0) ( 1, 0, 2)

. . . . . . . . .

( 1, 2,-1) ( 1, 2, 0) ( 1, 2, 2)

. . . . . .

n=2

( 2, 0, 0) ( 2, 0, 1)

( 2, 1, 0) ( 2, 1, 1)

. . . . . .

. . . . . .

There are three terms with an astersk that we shall discuss in a moment, but let us
start at the beginning, where the first term is (−2,−1,−1). The position where this it
occurs corresponds to the term u2

n+1, because n = −2. However, the possible interaction
partners (−1,−2,−1) and (−1,−1,−2) corresponds both to unun+1, which is not allowed
by Liouville’s theorem.

The next term is (−2,−1, 0), which corresponds to un+1un+2. It has the following
two partners: (0,−2,−1) and (−1, 0,−2), which correspond to un−1un−2 and un−1un+1,
respectively. Those are the standard terms in the GOY model, and are marked by the
asterisks above.

It turns out that all other triples in which no two members are the same are equivalent
to the GOY terms, and those where two members are the same all have problems with

7



Liouville’s theorem.

(b) Energy conservation means that undu∗
n/dt = 0. Thus, with the three terms isolated above,

we have

[un′kn′Cun′+1un′+2|n′=n−2 [un′kn′Bun′+1un′−1|n′=n−1 [un′kn′Aun′−2un′−1|n′=n = 0. (41)

Thus, we have

un−2kn−2Cun−1un + un−1kn−1Bunun−2 + unknAun−2un−1 = 0, (42)

or
kn−2C + kn−1B + knA = 0. (43)

Enstrophy conservation implies

k3
n−2C + k3

n−1B + k3
nA = 0. (44)

Using kn−1 = kn/2, we have
C/4 + B/2 + A = 0, (45)

C/43 + B/23 + A = 0. (46)

Since the right-hand side can be multiplied by an arbitrary factor, we can assume B = 1.
Subtracting the two equations yields

16 − 1

64
C +

4 − 1

8
= 0. (47)

Multipling by 8 yields 15
8 C = −3, so 5

8C = −1, or C = −8
5 . Next, we have

A = −C/4 − 1/2 = 2
5 − 1/2 = −1/10.

(c) If we have helicity conservation, we have instead of Equation (46)

C/42 − B/22 + A = 0 (48)

together with Equation (46). Again, subtracting the two equations yields

4 − 1

16
C +

2 + 1

4
= 0. (49)

Multipling by 4 yields 3
4C = −3, so 1

4C = −1, or C = −4. Next, we have
A = −C/4 − 1/2 = 1 − 1/2 = 1/2.
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