
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Preparation for midterm exam on Oct 12, 2016 October 11, 2016, Axel Brandenburg

This is a mock midterm exam; the actual exam questions will be slightly less involved and should be

manageable within 50 minutes. You are welcome to email me with questions and an estimate of how

long you have been struggling with each question.

1. Thermal instability. The energy equation can be formulated as an evolution equation for
the specific entropy,

ρT
DS

Dt
= −ρL + ∇ · (K∇T ), (1)

where L = ρΛ − Γ is the difference between heating and cooling per unit mass, T is the
temperature, S is the specific entropy, and K is the radiative conductivity.

(a) Give a qualitative sketch showing a possible form of L(T ) that leads to an instability.

(b) Mark fixed points in L(T ) and explain in words which one(s) is/are stable and which
one(s) is/are unstable.

(c) Explain in words why the consideration of L(T ) alone gives an incomplete picture and why
the consideration of density and pressure changes might imply a more stringent criterion
of instability.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Qualitative sketch showing a possible form of L(T ) that leads to an instability:

(b) Fixed points correspond to L(T ) = 0. They are marked with open and closed symbols.
When L(T ) > 0, the gas will cool, so T will sink. This is indicated by an arrow pointing
left. Therefore, the fixed point in the middle (blue open symbol) is unstable and the one
to the left is stable. Likewise, when L(T ) < 0, the gas will heat, so again the fixed point
in the middle (blue open symbol) is unstable and the one to the right is stable.

(c) If the gas cools, its pressure decreases. This leads to compression, so the density increases.
This enhances the cooling effect, which is proportional ρ2Λ, and makes the gas more easily
unstable. Conversely, if the gas heats, it expands, the density decreases, decreasing its
ability to cool, making it again more easily unstable. The suggests that the isochoric
stabiluty criterion may not be as stringent as if density adjustment is allowed.
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2. Stability with self-gravity. Consider the linearized one-dimensional continuity, Euler, and
Poisson equations in the form

∂ρ1

∂t
= −ρ0

∂u1x

∂x
,

∂u1x

∂t
= − c2

s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
,

∂2Φ1

∂x2
= 4πGρ1,

where subscripts 1 indicate small perturbations and cs and ρ0 are assumed constant.

(a) Assume that all perturbed quantities (subscript 1) are proportional to ei(kx−ωt) and write
the resulting equations in matrix form.

(b) Show that the dispersion relation is

ω2 = c2
sk

2 − 4πGρ0,

and state for which values of k2 the system is unstable.

(c) Define
D = c2

s − 4πGρ0/k2,

and verify that




ρ1

u1x

Φ1



 =





ρ0

±
√

D
−4πGρ0/k2



 cos k(x ∓
√

Dt)

is an eigenfunction for D > 0.

(d) Give an eigenfunction for D < 0.

(e) Give an example where the above equations are relevant and describe in a few words what
happens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Assume that all perturbed quantities are proportional to ei(kx−ωt), and moving all terms
to the left, we have





−iω ik 0
ikc2

s −iω +ik
4πGρ0 0 k2









ρ̂1/ρ0

û1x

φ̂1



 = 0. (2)

(b) Computing the determinant of the matrix yields

−ω2k2 − 4πGρ0k
2 + c2

sk
4 = 0, (3)

or
k2(ω2 − c2

sk
2 + 4πGρ0) = 0, (4)

so the dispersion relation reads

ω2 = c2
sk

2 − 4πGρ0 (5)

The system is unstable when ω2 < 0, i.e., in the range 0 ≤ k2 < 4πGρ0/c2
s .
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Figure 1: Dispersion relation showing ω2(c2
sk

2)/σ2
ff (left) and ω(csk)/σff (right), where σ2

ff = 4πGρ0

has been introduced. In the right-hand panel, imaginary (real) parts are plotted in red (blue). On
the left, the dispersion relation for sound waves is plotted as a dash-dotted line.

(c) To verify this, we just insert this into the original equations. We begin with

∂ρ1

∂t
= −ρ0

∂u1x

∂x
,

and find
∂ρ1

∂t
= ±ρ0k

√
D sin k(x ∓

√
Dt)

on the left and

−ρ0
∂u1x

∂x
= ±ρ0k

√
D sin k(x ∓

√
Dt)

on the right. Next, we consider

∂u1x

∂t
= − c2

s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
,

and find
∂u1x

∂t
= Dk sin k(x ∓

√
Dt)

on the left and

− c2
s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
= c2

sk sin k(x ∓
√

Dt) − 4πGρ0/k sin k(x ∓
√

Dt)

on the right. This would mean

Dk2 = c2
sk

2 − 4πGρ0

which is indeed obeyed given the definition of D. Finally, we consider

∂2Φ1

∂x2
= 4πGρ1,

and find
∂2Φ1

∂x2
= 4πGρ0 cos k(x ∓

√
Dt)

on the left and
4πGρ1 = 4πGρ0 cos k(x ∓

√
Dt)

which is also ok.
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(d) Let’s guess (and then check [and then modify correspondingly]):





ρ1

u1x

Φ1



 =





ρ0 cos kx
∓
√

D sin kx
−(4πGρ0/k2) cos kx



 e∓
√

Dt

To verify this, we just insert this into the original equations. We begin with

∂ρ1

∂t
= −ρ0

∂u1x

∂x
,

and find
∂ρ1

∂t
= ∓ρ0k

√
D cos kx e∓

√
Dt

on the left and

−ρ0
∂u1x

∂x
= ∓ρ0k

√
D cos kx e∓

√
Dt

on the right. Next, we consider

∂u1x

∂t
= − c2

s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
,

and find
∂u1x

∂t
= +Dk sin kx e∓

√
Dt

on the left and

− c2
s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
= c2

sk sin kx e∓
√

Dt − (4πGρ0/k) sin kx e∓
√

Dt

on the right. This would mean

+Dk2 = c2
sk

2 − 4πGρ0

which is indeed obeyed given the definition of D. Finally, we consider

∂2Φ1

∂x2
= 4πGρ1,

and find
∂2Φ1

∂x2
= 4πGρ0 cos kx e∓

√
Dt

on the left and
4πGρ1 = 4πGρ0 cos kx e∓

√
Dt

which is also ok.

(e) The interstellar medium seems to be the place where these equations are relevant (the
isothermal equation of state is commonly used and there is no rotation, unlike to protosolar
nebula). On short enough length scales, sound waves work as usual, but on larger
length scales, they are no longer propagating and become unstable. This can lead to
star formation, especially when the temperatures are low and the sound speed small. In
practice, rotation sooner or later will play a role.
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3. The f-mode. Consider the eigenvalue problem for p- and f -mode oscillations in a polytropic
atmosphere,

ω2Φ̂ = c2
sk

2
⊥Φ̂ + g

∂Φ̂

∂z
− c2

s

∂2Φ̂

∂2z
, (6)

where ω is the eigenfrequency, cs(z) is the speed of sound, k⊥ is the horizontal wavenumber,
and Φ̂(z) is the eigenfunction, which is related to the displacement ξ(x⊥, z, t) for the velocity
u = Dξ/Dt via ξ = ∇Φ with Φ(x⊥, z, t) = Φ̂(z) cos(k⊥ · x⊥) cos(ωt). Furthermore, we have

D lnP/Dt = −γ∇ · u, (7)

which followed from D ln ρ/Dt = −∇ · u and DS/Dt = 0.

(a) Show that the assumption of zero pressure fluctuations at the surface is equivalent to
∇ · ξ = 0, i.e., ∇2Φ = 0.

(b) Show that the surface condition ∇2Φ = 0 corresponds to Φ̂ = Φ̂0 exp(−k|z|).
(c) Show that one particular solution (corresponding to the f -mode) is given by

ω2 = gk⊥. (8)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Inserting u = Dξ/Dt into Eq. (7) yields

D lnP/Dt = −γ∇ · Dξ/Dt,

Integration leads to
lnP = −γ∇ · ξ

Linearization yields lnP = ln(P0 + P1) = ln[P0(1 + P1/P0)] = lnP0 + ln(1 + P1/P0) =
lnP0 + P1/P0. Zero pressure fluctuations imply therefore ∇ · ξ1 = 0 for the fluctuations
ξ1.

(b) From ∇ · ξ1 = 0 we have ∇2Φ1 = 0 on the surface. This means

Φ′′ − k2Φ = 0,

which has the solution Φ = Φ0 e±kz. For this solution to be physical, it must not blow up
at infinity, so we have Φ = Φ0 e−|kz|.

(c) For z < 0 (below the surface), we have Φ = Φ0 ek⊥z. Inserting this into Eq. (6) yields

ω2Φ̂0 = gk⊥Φ̂0

or ω2 = gk⊥.

4. Magnetic energy equation. Assume that the magnetic field, B, is governed by the equations

∂B

∂t
+ ∇ × E = 0, J = ∇ × B/µ0, E = −v × B,

where E is the electric field, J the current density, v the velocity, and µ0 the permeability.

(a) Show that

∂

∂t

(

B2

2µ0

)

+
1

µ0
B · ∇ × E = 0.
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(b) Write ∇ · (E × B) = ǫijk∂i(EjBk) and show, using the product rule, that

∇ · (E × B) = B · ∇ × E − E · ∇ × B.

[Remember that ǫijk = ǫjki = −ǫjik.]

(c) Use this relation to show that

∂

∂t

(

B2

2µ0

)

+ ∇ ·
(

E × B

µ0

)

+ J · E = 0.

(d) Show that the energy equation can be written in the form

∂

∂t

(

B2

2µ0

)

+ ∇ ·
(

E × B

µ0

)

+ v · (J × B) = 0.
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