ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence September 29, 2016, Axel Brandenburg

Handout 10: Eigenvectors as vectors

The purpose of this handout is to give more substance
to the notion of eigenfunctions and to plot them in real
space as a function of z and y, as done in Figure 1. At the
bottom of Problems Set 3 (September 22), the real and
imaginary parts of the eigenfunction were plotted like so:
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Here, Ret)(x) and Imi)(z) were obtained as eigenvec-
tors of an n X n matrix. Let us recall that in Handout 7,
the velocity was written in the form

u=V x (12),

and the streamfunction ¢ was written as ¥(x,y,t) =
Y(z) k¥ *ot. Correspondingly, we have 4, and 4, which

are given by
Gy = iktp, 1y = —9'. (2)

This is not very intuitive and at the end of the day we
want to see how the flow really looks like. This can be
done computing ¥ (x,y) = ¥(z)e*¥ and plotting it as
contours. These contours are indeed the streamlines of
the perturbed flow.

Alternatively, we can plot ¥(z,y) as “filled” contours
(color scale representation) together with the u vectors.
This is shown in Figure 1, where

u; = Re (ilmﬁ eiky> . uy =Re (

e = 0.0
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We must remember, however, that this is only the per-
turbation and that ¢ was actually only 11, so

1,/}($,y) = 1/’0(1?) + €¢1($7y)a (4)

where ¥o(x) = Uplncoshz for U = Uptanha with Uy
being the flow amplitude and € is an assumed perturbation
amplitude; see the three panels above.
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Figure 1: Eigenfunction ¢ for Rayleigh’s insta-
bility equation plotted as a function of z and y.



passive tracer, t = 0.2
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passive tracer, t = 0.4
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passive tracer, t = 0.6
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Figure 2: Numerical solutions obtained with the PENCIL CODE.



passive tracer, ¢t = 0.9

w with u vectors
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Figure 3: Similar to Figure 7?7, but for later times.



Nonlinear solutions

We have seen the linear solutions® in the figure above still
look somewhat odd. Thus is because e should really be
rather small and 0.2 is too big. On the other hand, for
€ = 0.05, there is not much to see.

To solve the fully nonlinear problem, we can use a hy-
drodynamics code such as ATHENA2, DEDALUS?, or the
PeNciL Cope?. The Rayleigh instability problem is a
limiting case (v — 0) of the Kelvin-Helmholtz instability, which is used as a common test problem
for numerical codes. It has been used last Summer during the Bootcamp for Computational Fluid
Dynamicshttp://www.nordita.org/~brandenb/teach/PencilCode/LCDworkshop2016/ at the Labora-
tory for Computational Dynamics (LCD), which is upstairs in the third floor. See Lecoanet et al. (2016)
for details.
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