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Handout 11: p-modes for the isentropic case

1 Derivation for isentropic case

The continuity equations is DInp/Dt = —V - u, and from Ds/Dt = 0 we obtain DInp/Dt = —4V - u.
Our linearized equations are then

p1+u1-Vpy+poV-u; =0, (1)
p1+ur- Vpo+ypoV -up =0, (2)
pot1 + Vpi + p1gz =0. (3)
Assume £ = u and integrate the continuity equation in time, i.e.,
p1+& - Vpo+poV-& =0, (4)
p1+& - Vpo+ypoV-& =0, (5)
poéi + Vp1 + prgz = 0. (6)

Divide by pg, use Vpy = —pog2, 7po = ¢2po, replace gz = ¢22/H, = —c2V Inpy, and insert the above
expressions for p; and pq, so

p1+& - Vpo+poV-& =0, (7)
p1—&1zpog + poV - €1 =0, (8)
N 1 .
&+ —Vp+2gz =0 (9)
Po Po
Insert p; and p; into the momentum equation, so
" 1 )
&+ %V [po(é129 — 2V - &1)] — (&1 - Vnpy+ V - £1)g2 =0, (10)
or 1
&+ %V [po(6129 — YV - &1)] + (&12/H, — V - £1)g2 = 0, (11)
or, using the fact that gH, = 2, we get
N 1 )
&+ %V [po(§129 = ZV - &1)] + (§129 — 2V - &1)2/H, = 0, (12)
SO )
51 + Vv (glzg - Cfv ' 51) =0. (13)

Assuming that the displacement is a potential field, i.e., &, = V®, we have (Bogdan & Cally, 1995)
D 4 god/0z — 2V D = 0. (14)

This leads to an eigenvalue problem for eigenvalue w?,

0o %P
2 21.2 2
w®=ck°®+g . c; P (15)

At the bottom, we assume ® = 0, which means that the last data point has to be omitted from the
matrix. At the top, we require (k% —d?/dz?)® = 0, which means that we replace the eigenvalue problem

on the boundary by
0P

~ 9%

Note that Equation (15) is valid even in the non-isothermal case. In Figure 1, we compare solutions
for the isothermal and non-isothermal (n = 3/2) cases. Note that in the latter case the p-modes bend
down and the difference between qualitative difference between the f- and p-modes diminishes.

w?® (16)
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Figure 1: kw diagram for isothermal case (left) and various isentropic cases.

2 Reduction to the isothermal case

It is instructive to see how to obtain the dispersion relation for the isothermal case from Equation (15).

Replacing 0, — ik,, we have
w? = 2k +ik,g+ 2k* =0,

Split k, = k. + ik” into real and imaginary parts, so we get
w® = 2k + (k. — kg + 2 (k2 — k* + 2k, 2KY) = 0,
and solve for real and imaginary parts:
w? =2k — Klg+ (K7 — k) =0,
gkl + 2K.2K! 2 = 0,
So now replace k7 = —g/2c? into Equation (19) and get
w? = 2k* 4 g% /22 + (K2 — g*/act) =0,
S0

w? = 2k? + g*/4Act + kP = 0.
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