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Handout 13: The dynamo instability

1 Roberts flow dynamos

Roberts (1972) investigated four incompressible spatially periodic steady flows with regard to their dy-
namo properties. More precisely, the flows vary periodically in the x and y directions, but are independent
of z. We may write the corresponding velocities u so that the components ux and uy have in all four
cases the form

ux = v0 sin k0x cos k0y , uy = −v0 cos k0x sin k0y , (1)

while the components uz are different and given by

uz = w0 sin k0x sin k0y (flow I), (2)

uz = w0 cos k0x cos k0y (flow II), (3)

uz = 1
2w0(cos 2k0x + cos 2k0y) (flow III), (4)

uz = w0 sin k0x (flow IV), (5)

where v0, w0 and k0 are constants. In all four cases, Roberts found conditions under which dynamo
action is possible, that is, magnetic fields may grow. The resulting magnetic fields survive xy averaging
and are therefore amenable to mean-field treatment!

Figure 1 shows an example for the magnetic field evolution for Roberts flow I.1 During class, we shall
also look at Jrms/Brms, which gives an indication about the typical wavenumber of the field. This will
be different for different values of the magnetic Reynolds number, ReM = urms/ηkf . We shall also look
at the work done against the Lorentz force, −〈u · (J × B)〉.

Figure 1: Growth of Brms and the instantaneous growth rate.

2 Turbulent dynamos

“Playing” with kinematic flow dynamos has only limited usefulness. Real dynamos are nonlinear, so
the magnetic field acts back on the flow and leads to saturation (and sometimes more complicated and
unexpected phenomena).

An important diagnostics of turbulence in general are the kinetic and magnetic energy spectra. In
incompressible (or nearly incompressible) isotropic turbulence one usually defines the spectral energy per
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unit mass,

E(k, t) =
∑

k
−

<|k|≤k+

|û(k, t)|2, (6)

where k± = k ± δk/2 mark a constant linear interval around wavenumber k, and the hat on u denotes
the three-dimensional Fourier transformation in space. The spectral kinetic energy is normalized such
that ∫ ∞

0

E(k) dk = 1
2 〈u

2〉, (7)

where angular brackets denote volume averaging. This equation shows that the dimension of E(k, t) is
cm3 s−2, and E(k) can be interpreted as the kinetic energy per unit mass and wavenumber.

Equivalent concepts and definitions also apply to the magnetic field B, where one defines spectra
of magnetic energy M(k), magnetic helicity H(k), and current helicity C(k), which are normalized
such that

∫
M(k) dk = 〈B2〉/2µ0, where µ0 is the vacuum permeability,

∫
H(k) dk = 〈A · B〉, and∫

C(k) dk = 〈J · B〉. Here, A is the magnetic vector potential with B = ∇ × A and J = ∇ × B/µ0 is
the current density. The magnetic helicity and its spectrum are gauge-invariant because of the assumed
periodicity of the underlying domain. In that case the addition of a gradient term, ∇Λ, in A has no
effect, because 〈∇Λ · B〉 = 〈Λ∇ · B〉 = 0, where we have used the condition that B is solenoidal.

Figure 2: Left: Compensated time-averaged spectra of kinetic and magnetic energy, as well as of kinetic
and magnetic helicity, for a run with ReM = 600. Right: Visualization of Bx on the periphery of the
computational domain for a run with ReM = 600 and a resolution of 5123 mesh points. Note the clear
anisotropy with structures elongated in the direction of the field.
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