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Handout 13b: The dynamo instability (cont’d)

In the wake of Cowling’s antidynamo theorem1 the Herzenberg dynamo played an important role as
an early example of a dynamo where the existence of excited solutions could be proven rigorously. The
Herzenberg dynamo does not attempt to model an astrophysical dynamo. Instead, it was complementary
to some of the less mathematical and more phenomenological models at the time, such as Parker’s
migratory dynamo as well as the observational model of Babcock, and the semi-observational model of
Leighton, all of which were specifically designed to describe the solar cycle.

1 Fast dynamos: the stretch-twist-fold picture

An elegant heuristic dynamo model illustrating the possibility of fast dynamos is what is often referred
to as the Zeldovich ‘stretch-twist-fold’ (STF) dynamo (see Figure 1). We briefly outline it here, as it
illustrates nicely several features of more realistic dynamos.

The dynamo algorithm starts with first stretching a closed flux rope to twice its length preserving
its volume, as in an incompressible flow (A→B in Figure 1). The rope cross-section then decreases by
factor two, and because of flux freezing the magnetic field doubles. In the next step, the rope is twisted
into a figure eight (B→C in Figure 1) and then folded (C→D in Figure 1) so that now there are two
loops, whose fields now point in the same direction and together occupy a similar volume as the original
flux loop. The flux through this volume has now doubled. The last important step consists of merging
the two loops into one (D→A in Figure 1), through small diffusive effects. This is important in order
that the new arrangement cannot easily undo itself and the whole process becomes irreversible. The
newly merged loops now become topologically the same as the original single loop, but now with the field
strength scaled up by factor 2.

Repeating the algorithm n times, leads to the field in the flux loop growing by factor 2n, or at a
growth rate ∼ ln 2/T where T is the time for the STF steps. This makes the dynamo potentially a fast
dynamo, whose growth rate does not decrease with decreasing resistivity. Also note that the flux through
a fixed ‘Eulerian surface’ grows exponentially, although the flux through any Lagrangian surface is nearly
frozen; as it should be for small diffusivities.

The STF picture illustrates several other features: first we see that shear is needed to amplify the
field at step A→B. However, without the twist part of the cycle, the field in the folded loop would cancel
rather than add coherently. To twist the loop the motions need to leave the plane and go into the third
dimension; this also means that field components perpendicular to the loop are generated, albeit being
strong only temporarily during the twist part of the cycle. The source for the magnetic energy is the
kinetic energy involved in the STF motions.

Most discussions of the STF dynamo assume implicitly that the last step of merging the twisted loops
can be done at any time, and that the dynamo growth rate is not limited by this last step. This may
well be true when the fields in the flux rope are not strong enough to affect the motions, that is, in the
kinematic regime. However as the field becomes stronger, and if the merging process is slow, the Lorentz
forces due to the small scale kinks and twists will gain in importance compared with the external forces
associated with the driving of the loop as a whole. This may then limit the efficiency of the dynamo.

In this context one more feature deserves mentioning: if in the STF cycle one twists clockwise and
folds, or twists counter-clockwise and folds one will still increase the field in the flux rope coherently.
However, one would introduce opposite sense of writhe in these two cases, and so opposite internal twists.
So, although the twist part of the cycle is important for the mechanism discussed here, the sense of twist
can be random and does not require net helicity. This is analogous to a case when there is really only

1Larmor proposed in 1919 that the solar field might be generated by a self-excited dynamo. However, in 1933 Cowling
published his antidynamo theorem, which states that two-dimensional (axisymmetric) magnetic fields cannot be sustained
by dynamo action. Larmor (1934) responds to Cowling (1933) with the words “The view that I advanced briefly and
tentatively long ago, which has come to be referred to as, perhaps too precisely, the self-exciting dynamo analogy, is still,
so far as I know, the only foundation on which a gaseous body such as the Sun could possess a magnetic field: so that if it
is demolished there could be no explanation of the Sun’s magnetism even remotely in sight.”
Cowling, T. G., “The magnetic field of sunspots,” Month. Not. Roy. Astron. Soc. 94, 39-48 (1933).
Larmor, J., “The magnetic field of sunspots,” Month. Not. Roy. Astron. Soc. 94, 469-471 (1934).

1



B

D

STRETCH

TWIST

FOLD

MERGE

A

C

Figure 1: A schematic illustration of the stretch-twist-fold-merge dynamo.

a small scale dynamo, but one that requires finite kinetic helicity density locally. We should point out,
however, that numerical simulations have shown that dynamos work and are potentially independent of
magnetic Reynolds number even if the flow has zero kinetic helicity density everywhere.

If the twisted loops can be made to merge efficiently, the saturation of the STF dynamo would probably
proceed differently. For example, the field in the loop may become too strong to be stretched and twisted,
due to magnetic curvature forces. Another interesting way of saturation is that the incompressibility
assumed for the motions may break down; as one stretches the flux loop the field pressure resists the
decrease in the loop cross-section, and so the fluid density in the loop tends to decrease as one attempts
to make the loop longer. (Note that it is B/ρ which has to increase during stretching.) The STF picture
has inspired considerable work on various mathematical features of fast dynamos and some of this work
can be found in the book by Childress and Gilbert which in fact has STF in its title!

2 Fast ABC-flow dynamos

ABC flows are solenoidal and fully helical with a velocity field given by

U =





C sin kz + B cos ky
A sin kx + C cos kz
B sin ky + A cos kx



 . (1)

When A, B, and C are all different from zero, the flow is no longer integrable and has chaotic streamlines.
There is numerical evidence that such flows act as fast dynamos. The magnetic field has very small net
magnetic helicity. This is a general property of any dynamo in the kinematic regime and follows from
magnetic helicity conservation. Even in a nonlinear formulation of the ABC flow dynamo problem,
where the flow is driven by a forcing function similar to Equation (1) the net magnetic helicity remains
unimportant. This is however not surprising, because the development of net magnetic helicity requires
sufficient scale separation, i.e. the wavenumber of the flow must be large compared with the smallest
wavenumber in the box (k = k1). If this is not the case, helical MHD turbulence behaves similarly to
nonhelical turbulence. A significant scale separation also weakens the symmetries associated with the
flow and the field, and leads to a larger kinematic growth rate, more compatible with the turnover time
scale.
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Figure 2: Production of positive writhe helicity by an uprising and expanding blob tilted in the clockwise
direction by the Coriolis force in the southern hemisphere, producing a field-aligned current J in the
opposite direction to B.

Most of the recent work on nonlinear ABC flow dynamos has focused on the case with small scale
separation and, in particular, on the initial growth and possible saturation mechanisms. In the kinematic
regime, these authors find a near balance between Lorentz work and Joule dissipation. The balance
originates primarily from small volumes where the strong magnetic flux structures are concentrated. The
net growth of the magnetic energy comes about through stretching and folding of relatively weak field
which occupies most of the volume. The mechanism for saturation could involve achieving a local pressure
balance in these strong field regions.

3 Mean-field electrodynamics

In 1955 Parker first proposed the idea that the generation of a poloidal field, arising from the systematic
effects of the Coriolis force (Figure 2), could be described by a corresponding term in the induction
equation,

∂Bpol

∂t
= ∇ ×

(

αBtor + ...
)

. (2)

It is clear that such an equation can only be valid for averaged fields (denoted by overbars), because
for the actual fields, the induced electromotive force (EMF) U × B, would never have a component in
the direction of B. While being physically plausible, this approach only received general recognition
and acceptance after Roberts and Stix (1972) translated the work of Steenbeck, Krause, Rädler (1966)
into English. In those papers the theory for the α effect, as they called it, was developed and put on
a mathematically rigorous basis. Furthermore, the α effect was also applied to spherical models of the
solar cycle (with radial and latitudinal shear) and the geodynamo (with uniform rotation).

In mean field theory one solves the Reynolds averaged equations, using either ensemble averages,
toroidal averages or, in cases in Cartesian geometry with periodic boundary conditions, two-dimensional
(e.g. horizontal) averages. We thus consider the decomposition

U = U + u, B = B + b. (3)

Here U and B are the mean velocity and magnetic fields, while u and b are their fluctuating parts. These
averages satisfy the Reynolds rules,

U1 + U2 = U1 + U2, U = U , Uu = 0, U U = U U , (4)

∂U/∂t = ∂U/∂t, ∂U/∂xi = ∂U/∂xi. (5)

Some of these properties are not shared by several other averages; for gaussian filtering U 6= U , and for

spectral filtering U U 6= U U , for example. Note that U = U implies that u = 0.
In the remainder we assume that the Reynolds rules do apply. Averaging Equation (11) yields then

the mean field induction equation,
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∂B

∂t
= ∇ ×

(

U × B + E − ηJ
)

, (6)

where
E = u × b (7)

is the mean EMF. Finding an expression for the correlator E in terms of the mean fields is a standard
closure problem which is at the heart of mean field theory. In the two-scale approach one assumes that E
can be expanded in powers of the gradients of the mean magnetic field. This suggests the rather general
expression

Ei = αij(g, Ω̂,B, ...)Bj + ηijk(g, Ω̂,B, ...)∂Bj/∂xk, (8)

where the tensor components αij and ηijk are referred to as turbulent transport coefficient. They depend
on the stratification, angular velocity, and mean magnetic field strength. The dots indicate that the
transport coefficients may also depend on correlators involving the small scale magnetic field, for example
the current helicity of the small scale field. We have also kept only the lowest large scale derivative of
the mean field; higher derivative terms are expected to be smaller.

The general form of the expression for E can be determined by rather general considerations. For
example, E is a polar vector and B is an axial vector, so αij must be a pseudo-tensor. The simplest
pseudo-tensor of rank two that can be constructed using the unit vectors g (symbolic for radial density

or turbulent velocity gradients) and Ω̂ (angular velocity) is

αij = α1δij g · Ω̂ + α2ĝiΩ̂j + α3ĝjΩ̂i. (9)

Note that the term g · Ω̂ = cos θ leads to the co-sinusoidal dependence of α on latitude, θ, and a change
of sign at the equator. Additional terms that are nonlinear in g or Ω̂ enter if the stratification is strong
or if the body is rotating rapidly. Likewise, terms involving U , B and b may appear if the turbulence
becomes affected by strong flows or magnetic fields. In the following section we discuss various approaches
to determining the turbulent transport coefficients.

One of the most important outcomes of this theory is a quantitative formula for the coefficient α1 in
Equation (9) by Krause (1967)

α1 g · Ω̂ = − 16
15

τ2
coru

2
rmsΩ · ∇ ln(ρurms), (10)

where τcor is the correlation time, urms the root mean square velocity of the turbulence, and Ω the
angular velocity vector. The other coefficients are given by α2 = α3 = −α1/4. Throughout most of the
solar convection zone, the product ρurms decreases outward.2 Therefore, α > 0 throughout most of the
northern hemisphere. In the southern hemisphere we have α < 0, and α varies with colatitude θ like
cos θ. However, this formula also predicts that α reverses sign very near the bottom of the convection
zone where urms → 0. This is caused by the relatively sharp drop of urms.

3.1 First order smoothing approximation

The first order smoothing approximation (FOSA) or, synonymously, the quasilinear approximation, or
the second order correlation approximation is the simplest way of calculating turbulent transport coeffi-
cients. The approximation consists of linearizing the equations for the fluctuating quantities and ignoring
quadratic terms that would lead to triple correlations in the expressions for the quadratic correlations.
This technique has traditionally been applied to calculating the turbulent diffusion coefficient for a passive
scalar or the turbulent viscosity (eddy viscosity).

Suppose we consider the induction equation. The equation for the fluctuating field can be obtained
by subtracting Equation (6) from the induction equation,

∂B

∂t
= ∇ × (u × B − J/σ). (11)

2This can be explained as follows: in the bulk of the solar convection zone the convective flux is approximately constant,
and mixing length predicts that it is approximately ρu3

rms. This in turn follows from Fconv ∼ ρurmscpδT and u2
rms/Hp ∼

gδT/T together with the expression for the pressure scale height Hp = (1 −
1

γ
)cpT/g. Thus, since ρu3

rms ≈ const, we have

urms ∼ ρ−1/3 and ρu3
rms ∼ ρ2/3.
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we obtain
∂b

∂t
= ∇ ×

(

U × b + u × B + u × b − E − ηj
)

, (12)

where j = ∇ × b ≡ J − J is the fluctuating current density. The first order smoothing approxima-
tion consists of neglecting the term u × b on the RHS of Equation (12), because it is nonlinear in the
fluctuations. This can only be done if the fluctuations are small, which is a good approximation only
under rather restrictive circumstances, for example if Rm is small. The term E is also nonlinear in the
fluctuations, but it is not a fluctuating quantity and gives therefore no contribution, and the U × b is
often neglected because of simplicity.

The neglect of the U term may not be justified for systems with strong shear (e.g. for accretion discs)
where the inclusion of U itself could lead to a new dynamo effect, namely the shear–current effect. In
the case of small Rm, one can neglect both the G term and the time derivative of b, resulting in a linear
equation

η∇
2b = −∇ ×

(

u × B
)

. (13)

This can be solved for b, if u is given. E can then be computed relatively easily.
However, in most astrophysical applications, Rm ≫ 1. In such a situation, FOSA is thought to still

be applicable if the correlation time τcor of the turbulence is small, such that τcorurmskf ≪ 1, where
urms and kf are typical velocity and correlation wavenumber, associated with the random velocity field
u. Under this condition, the ratio of the nonlinear term to the time derivative of b is argued to be
∼ (urmskfb)/(b/τcor) = τcorurmskf ≪ 1, and so G can be neglected (but see below). We then get

∂b

∂t
= ∇ ×

(

u × B
)

. (14)

To calculate E , we integrate ∂b/∂t to get b, take the cross product with u, and average, i.e.

E = u(t) ×
∫ t

0

∇ ×
[

u(t′) × B(t′)
]

dt′. (15)

For clarity, we have suppressed the common x dependence of all variables. Using index notation, we
have3

E i(t) =

∫ t

0

[

α̂ip(t, t
′)Bp(t

′) + η̂ilp(t, t
′)Bp,l(t

′)
]

dt′, (16)

with α̂ip(t, t
′) = ǫijkuj(t)uk,p(t′) and η̂ilp(t, t

′) = −ǫijpuj(t)ul(t′), where we have used Bl,l = 0 = ul,l,

and an additional term ǫijkuj(t)uk(t′)δlp in η̂ilp(t, t
′) has been omitted, because it will soon drop out. In

the statistically steady state, we can assume that α̂ip and η̂ilp depend only on the time difference, t− t′.
Assuming isotropy (again only for simplicity), these tensors must be proportional to the isotropic tensors
δip and ǫilp, respectively, so we have

E(t) =

∫ t

0

[

α̂(t − t′)B(t′) − η̂t(t − t′)J(t′)
]

dt′, (17)

where α̂(t − t′) = − 1
3
u(t) · ω(t′) and η̂t(t − t′) = 1

3
u(t) · u(t′) are integral kernels, and ω = ∇ × u is the

vorticity of the velocity fluctuation (see the footnote4 for details).
If we assume the integral kernels to be proportional to the delta function, δ(t − t′), or, equivalently,

if B can be considered a slowly varying function of time, one arrives at

E = αB − ηtJ (18)

with

α = − 1
3

∫ t

0

u(t) · ω(t′) dt′ ≈ − 1
3
τcoru · ω, (19)

3Note that [u × ∇ × (u × B)]i = ǫijkǫklmǫmnpuj∂l(unBp) = α̂ipBp + η̂ilpBp,l, where commas denote partial dif-

ferentiation and time arguments in α̂ip = α̂ip(t, t′), η̂ilp = η̂ilp(t, t′), and Bp = Bp(t′) has been omitted. Contracting

ǫklmǫmnp = δknδlp − δkpδln gives α̂ip = ǫijk(ujuk,p − ujul,lδkp, and η̂ilp = ǫijk(ujukδlp − ujulδkp).
4Note that under isotropy we have α̂ip = α̂δip and η̂ilp = η̂tǫilp. Multiplying these equations by δip and ǫilp, respectively,

and noting that δipδip = 3 and ǫilpǫilp = 6 we have α̂ = 1

3
α̂ipδip = 1

3
ujǫjkiuk,i = −

1

3
u · ω, and η̂t = 1

6
η̂ilpǫilp =

−
1

6
ǫijpujulǫilp = −

1

3
u2, where we have used ǫijpǫilp = 2δjl, and the t and t′ arguments have been omitted.
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ηt = 1
3

∫ t

0

u(t) · u(t′) dt′ ≈ 1
3
τcoru2. (20)

When t becomes large, the main contribution to these two expressions comes only from late times,
t − t′ ≪ t, because then the contributions from early times are no longer strongly correlated with u(t).
By using FOSA we have thus solved the problem of expressing E in terms of the mean field. The
turbulent transport coefficients α and ηt depend, respectively, on the helicity and the energy density of
the turbulence.

3.2 MTA – the ‘minimal’ τ approximation

The ‘minimal’ τ approximation is a simplified version of the τ approximation as it has been introduced
by Orszag (1970) and used by Pouquet, Frisch and Léorat (1976) in the context of the Eddy Damped
Quasi Normal Markovian (EDQNM) approximation. In that case a damping term is introduced in order
to express fourth order moments in terms of third order moments. In the τ approximation, as introduced
by Vainshtein and Kitchatinov and Kleeorin and Rogachevskii one approximates triple moments in terms
of quadratic moments via a wavenumber-dependent relaxation time τ(k). The ‘minimal’ τ approximation
(MTA), as it is introduced by Blackman and Field is applied in real space in the two-scale approximation.
We will refer to both the above types of closures (where triple moments are approximated in terms of
quadratic moments and a relaxation time τ) as the ’minimal’ τ approximation or MTA.

There are some technical similarities between FOSA and the minimal τ approximation. The main
advantage of the τ approximation is that the fluctuations do not need to be small and so the triple
correlations are no longer neglected. Instead, it is assumed (and this can be and has been tested using
simulations) that the one-point triple correlations are proportional to the quadratic correlations, and that
the proportionality coefficient is an inverse relaxation time that can in principle be scale (or wavenumber)
dependent.

In this approach, one begins by considering the time derivative of E ,

∂E
∂t

= u × ḃ + u̇ × b, (21)

where a dot denotes a time derivative. For ḃ, we substitute Equation (12) and for u̇, we use the Euler
equation for the fluctuating velocity field,

∂u

∂t
= − 1

ρ0

∇p + f + F vis + H, (22)

where H = −u ·∇u+u · ∇u is the nonlinear term, f is a stochastic forcing term (with zero divergence),
and F vis is the viscous force. We have also assumed for the present that there is no mean flow (U = 0),
and have considered the kinematic regime where the Lorentz force is set to zero. All these restrictions
can in principle be lifted (see below). For an incompressible flow, the pressure term can be eliminated in
the standard fashion in terms of the projection operator.

Now since f does not correlate with b, the only contribution to u̇ × b, is the small viscous term and

the triple correlation involving b and H. The u × ḃ term however has non-trivial contributions. We get

∂E
∂t

= α̃ B − η̃t J − E
τ

, (23)

where the last term subsumes the effects of all triple correlations, and

α̃ = − 1
3
u · ω and η̃t = 1

3
u2 (kinematic theory) (24)

are coefficients that are closely related to the usual α and ηt coefficients in Equation (18). We recall that
in this kinematic calculation the Lorentz force, and in fact the entire u̇ equation in Equation (21) has
been ignored. Its inclusion turns out to be extremely important: it leads to the emergence of a small
scale magnetic correction term in the expression for α̃.

One normally neglects the explicit time derivative of E , and arrives then at almost the same expression
as Equation (18), except that now one deals directly with one-point correlation functions and not only
via an approximation. Furthermore, the explicit time derivative can in principle be kept, although it
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Figure 3: Mutual regeneration of poloidal and toroidal fields in the case of the αΩ dynamo (left) and the
α2 dynamo (right).

becomes unimportant on time scales long compared with τ . In comparison with Equation (17), we note
that if one assumes α̂(t − t′) and η̂t(t − t′) to be proportional to exp[−(t − t′)/τ ] for t > t′ (and zero
otherwise), one recovers Equation (23) with the relaxation time τ playing now the role of a correlation
time.

4 α
2 and αΩ dynamos: simple solutions

For astrophysical purposes one is usually interested in solutions in spherical or oblate (disc-like) geome-
tries. However, in order to make contact with turbulence simulations in a periodic box, solutions in
simpler Cartesian geometry can be useful. Cartesian geometry is also useful for illustrative purposes. In
this subsection we review some simple cases.

Mean field dynamos are traditionally divided into two groups; αΩ and α2 dynamos. The Ω effect
refers to the amplification of the toroidal field by shear (i.e. differential rotation) and its importance for
the sun was recognized very early on. Such shear also naturally occurs in disk galaxies, since they are
differentially rotating systems. However, it is still necessary to regenerate the poloidal field. In both stars
and galaxies the α effect is the prime candidate. This explains the name αΩ dynamo; see the left hand
panel of Figure 3. However, large scale magnetic fields can also be generated by the α effect alone, so now
also the toroidal field has to be generated by the α effect, in which case one talks about an α2 dynamo;
see the right hand panel of Figure 3. (The term α2Ω model is discussed at the end of Section 4.2.)

4.1 α
2 dynamo in a periodic box

We assume that there is no mean flow, i.e. U = 0, and that the turbulence is homogeneous, so that α
and ηt are constant. The mean field induction equation then reads

∂B

∂t
= α∇ × B + ηT∇2B, ∇ · B = 0, (25)

where ηT = η + ηt is the sum of microscopic and turbulent magnetic diffusivity. We can seek solutions of
the form

B(x) = Re
[

B̂(k) exp(ik · x + λt)
]

. (26)

This leads to the eigenvalue problem λB̂ = αik × B̂ − ηTk2B̂, which can be written in matrix form as

λB̂ =





−ηTk2 −iαkz iαky

iαkz −ηTk2 −iαkx

−iαky iαkx −ηTk2



 B̂. (27)

This leads to the dispersion relation, λ = λ(k), given by

(λ + ηTk2)
[

(λ + ηTk2)2 − α2k2
]

= 0, (28)

with the three solutions
λ0 = −ηTk2, λ± = −ηTk2 ± |αk|. (29)
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Figure 4: Left panel: Dispersion relation for α2 dynamo, where kcrit = α/ηT. Middle and Right panels:
Dispersion relation for α2Ω dynamo with αkcrit/S = 0.35. The dotted line gives the result for the αΩ
approximation Equations (34) and (35). The axes are normalized using kcrit for the full α2Ω dynamo
equations.

The eigenfunction corresponding to the eigenvalue λ0 = −ηTk2 is proportional to k, but this solution
is incompatible with solenoidality and has to be dropped. The two remaining branches are shown in
Figure 4.

Unstable solutions (λ > 0) are possible for 0 < αk < ηTk2. For α > 0 this corresponds to the range

0 < k < α/ηT ≡ kcrit. (30)

For α < 0, unstable solutions are obtained for kcrit < k < 0. The maximum growth rate is at k = 1
2
kcrit.

Such solutions are of some interest, because they have been seen as an additional hump in the magnetic
energy spectra from fully three-dimensional turbulence simulations.

4.2 αΩ dynamo in a periodic box

Next we consider the case with linear shear, and assume U = (0, Sx, 0), where S = const. This model
can be applied as a local model to both accretion discs (x is radius, y is longitude, and z is the height
above the midplane) and to stars (x is latitude, y is longitude, and z is radius). For Keplerian discs,
the shear is S = − 3

2
Ω, while for the sun (taking here only radial differential rotation into account)

S = r∂Ω/∂r ≈ +0.1Ω⊙ near the equator.
For simplicity we consider axisymmetric solutions, i.e. ky = 0. The eigenvalue problem takes then the

form

λB̂ =





−ηTk2 −iαkz 0
iαkz + S −ηTk2 −iαkx

0 iαkx −ηTk2



 B̂, (31)

where ηT = η + ηt and k2 = k2
x + k2

z . The dispersion relation is now

(λ + ηTk2)
[

(λ + ηTk2)2 + iαSkz − α2k2
]

= 0, (32)

with the solutions
λ± = −ηTk2 ± (α2k2 − iαSkz)

1/2. (33)

Again, the eigenfunction corresponding to the eigenvalue λ0 = −ηTk2 is not compatible with solenoidality
and has to be dropped. The two remaining branches are shown in the middle- and right-hand panel of
Figure 4, together with the approximate solutions (valid for αkz/S ≪ 1)

Reλ± ≈ −ηTk2 ± |1
2
αSkz|1/2, (34)

Imλ± ≡ −ωcyc ≈ ±|1
2
αSkz|1/2, (35)

where we have made use of the fact that i1/2 = (1 + i)/
√

2.
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