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Handout 14: Nonlinear Water Waves

The KdV equation can be written in the form

4+ uu' +u" =0 (1)

1 Energy conservation in KdV

Among the several other conservation laws, energy conservation is an important one. To contrast the
effects of viscosity with dispersive effects, let us write

= —uu' 4+ vu” — pu"’, (2)

where we have introduced viscosity v and “dispersivity” p. To compute energy conservation, let us write

0
= (30®) = wi = —u®u’ + vun” — pun'. (3)

ot

The advection operator does not change the energy, because

/u2u/ dz = / (%ug)/ dz =0. (4)

But even the dispersive term does not change the energy:

/uu”’ dr = /(uu”)’ dz — / (W) dz = /(uu")l dz — / (u’Q)/ do = / (uu” — u’2)/ dz=0. (5)

By comparison,
/uu” dr = /(uu’)/ dz — / (u?) dz = —/ (u?) dx # 0, (6)

does lead to energy dissipation.

2 Solution

To determine the solution, we make what is called an ansatz, namely

u:$ (7)

cosh?[a(z — ct)]’

which has 3 unknowns that can be determined such that Equation (1) is obeyed. We now compute every

term in turn and begin with
sinh[a(z — ct)]

= ~+2Aac .
cosh®[a(z — ct)]

(8)
Next to compute uu’ and later v/, we need

sinh[a(z — ct)]

u' = —24a—— :
cosh”[a(x — ct)]

(9)
We see that with each differentiation we pull out a factor a. To simplify notation let us now introduce
0 =x(x — ct) (10)

for the argument of the cosh and sinh functions, so

o = oA (_3 sinh? @ 1 >

+
cosh*®  cosh? 0



Finally, we compute

W = 9443 {_3 (_4 SlnhrH 5 51nh3¢9 ) B smh39 } (12)
cosh’ 6 cosh” 0 cosh” 6
which combines to g _
W — AP (12 smh59 B 51111136’ ) ' (13)
cosh” 6 cosh” 6
Making use of the relation cosh? —sinh? z = 1, i.e., sinh? 2 = cosh? —1, we have
W — AP <12 sinh@(coskj@—l) _g SinhSG ) . (14)
cosh” 6 cosh” 6
o inh 6 inh 6 inh 6
u" = —2443 (12 LA D LAY P ) (15)
cosh” 6 cosh” 6 cosh” 6
and therefore 1o 10
u" = —2Ad® <4 LA ) . (16)
cosh” 6 cosh” 6

Putting now everything together, we have

ho 1
w4+ uu +u” =2aA Sl [ ¢ —4a®) + (—A + 124> ] 17
cosh® 6 ( )+ ) cosh? 6 (17)
The rhs can only vanish if
c=4a> = A/3. (18)

We also see that, if we were to introduce a parameter p in front of the dispersive term, i.e.,
o+ uu + pu" =0, (19)

the solution would read
c=4a®/p=A/3. (20)

so the relation A = 3c is not altered, but just the width changes.

Figure 1: xt diagram for ¢; = 3 and ¢y = 2.



Figure 2: zt diagram for ¢; = 3 and c2 = 1.

3 Numerical solutions

To compute numerical solutions of the KdV equation, one can just use a high-order finite difference
scheme and represent first derivative on a discrete mesh as

fi=(=fica+9fio —45fi_1 +45fix1 — fivo + firs)/(606z), (21)

and the third derivative as

fI" = (+fims — 8fi—a + 13fi_1 — 13fis1 + 8fira — firs)/(85x%). (22)

Both formulae have a stencil width of three in each direction, but the first derivative is sixth order and
the third one is only second order accurate. A third derivative that is also sixth order has a stencil width
of four:

fI = (+7fica — T2fi_3 + 338 fi—2 — 488fi_1 + 488fi 11 — 338 i + T2fi1s — Tfi—a)/(24062%).  (23)

The equations are advanced in time by a time-stepping scheme. It is advantageous to choose a high-
order scheme, e.g., a third order scheme. Higher order schemes also allow for a longer time step, which
allows the code still to be stable. The maximum possible time step scales in a well-defined way with
the parameters in the simulation. For pure advection, this is known as the Courant—Friedrichs—Lewy
condition, i.e., 0t < CopLdT/uUmax. If viscosity is important, it can constrain the time step further, and
on dimensional grounds it must be §t < Cyiscd2?/v, and likewise for dispersion, 6t < Caispdz®/p. In
practice, we can take the minimum of all three or more such constraints, i.e.,

6trnax = min I:CCFL(S-r/umaxa Oviscde/Va Cdispé-rg/,u] . (24)

For the code at hand, we found empirically Ccrr, = 0.9, Clyisc = 0.1, and Cagisp ~ 0.3.

Solitons cannot be superimposed just like that. Exact two-soliton solutions do actually exist, and if
they are fare enough apart initially, the addition of two solution is good enough. In Figures 1 and 2 we
show examples of soliton collisions. One clearly sees that the actual interaction is not just the sum of
two. Also, there is always a phase shift.
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