ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence October 30, 2016, Axel Brandenburg

Handout 14b: Nonlinear Water Waves (cont’d)

The KdV equation can be derived under the restrictions of shallow water (wavelength longer ¢ long
compared with depth h) and small (but finite) amplitude a compared with h, i.e.,

a<h</ (1)
One assumes an inviscid irrotational flow u = V¢, so the governing equation is the Bernoulli equation,
Qo+ 3(V9)? +Plp+gz=0,  V’6=0. (2)

We first need to discuss boundary conditions.

1 Boundary conditions

At rest, the water surface is assumed to be at z =, so the bottom is at z = —h, and the normal velocity

vanishes there, so
¢$.=0 (at z = —h). (3)

Next, the surface is assumed to be at z = (. Since the pressure vanishes zero, we have
8r¢® + 5(V°)* + g¢ = 0. (4)

where the superscript s refers to the surface. The location of the surface is described by the function
¢ = ((x,t), and we assume that
D¢/Dt=u. = ¢... (5)

Since D(/Dt = 0i¢ 4+ uzC» = 0tC + ¢ (4, We can also write
O+ ¢aCa =10 (at the surface). (6)
We note in passing that the linearized form of the two equations can be combined to 97¢ + g¢_, = 0,

which is an equation we have encountered in handout 11, see Eq. (16) of that handout.

2 Linear wave solutions

Assuming wave-like solutions of the form 2.0
¢ = f(z)sin(kz — wt), (1 ) ]
S Lok ]
which satisfy V26 = 0, the f has to be of the form f = fieb* + o=, = |
To obey f.. = 0, we have to have fike®* — foke ™ = 0 at 2 = —h, and osp ]
thus fike ™ *" — fokeF? =0, or fo/f1 = e~2** and thus ook
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kh
fz)=A (ekz =+ e_kz_Qkh) = Ae ™M (ek(z+h) + e_k(z+h)> ) (8) Figure 1: Dispersion relation.
The dashed line shows the result
and therefore f(z) = 2Ae %" cosh k(2 + h). without the tanh factor.
Inserting ¢ = 24e %" cosh k(2 + h)sin(kx — wt) into ¢ + g¢ . = 0,
and noting that f, = 2Ake™*"sinh k(z + h), we have

—w?2Ae %" cosh k(z + h) sin(kz — wt) + 2Agk e *" cosh k(2 + h) sin(kz — wt) = 0, 9)
and therefore w? = gk tanh k(z + h) at the surface at z = 0, so
w? = gk tanh kh. (10)

This is shown in Figure 1 and compared with w? = gk.



3 Perturbative nonlinear wave equation

We now make the following ansatz for ¢, which must obey VZ¢ = 0,
o= 2"n(z,1). (11)
n=0

To work with this, it is useful to write out the first few terms:
¢ = o+ 201 + 27 P2 + s + 2 s + ... (12)
In order that this satisfies V2¢ = 0, let us write down the second x and z derivatives,
G vx = Boux + 201 x + 22 P2 00 + 2203 4w + 2 Pagx + .. (13)

bow =202 +3-22¢3 +4-32%¢4 + ... (14)

Matching equal powers of z leads to the following recursive relations

¢O,mz +2 ¢2 = 07 (15)
¢17mz +3- 2¢3 =0, (16)
¢2,xac +4- 3¢4 = 0, (17)
or, more generally
Next, making use of the bottom boundary condition u, = 0, i.e., ¢ . = 0, we find ¢; = 0, and, because
of Equation (18), all odd terms vanish, i.e., ¢3 = ¢5 = ... = 0. With this, we can now write ¢ as
¢ =0+ 2> o+ 2 s+ ... (19)
Inserting the recursive relations, we have ¢o = —%fi)o,m: and
¢2 T ¢0 TTTT
=" = : . 2
O ST (20)
Let us use ¢ = ¢y as a shorthand, and so
_ 1 2 " 1 4 (iv)
(b—(p—izgp +ngp - .. (21)
With this, we find
1 1 v
Up =0 =¢ = 279"+ el — (22)
and 1
U, = ¢, = —zgp”—l—gz?’ o) — (23)

This has to be inserted back into the full time-dependent equation (2). Furthermore, to obey the ordering
(1), we define e = A/h for the amplitude A and § = (h/¢)? for the height. Solving order by order, one
arrives eventually at the equation

c
C,t + Cc,a: + % ECC,Z + %ChQ C,mzz = 07 (24)
to lowest order. Here, ¢ = v/gh is the wave speed, and c( ; is just an advection term that can be removed

by going into a comoving frame to obtain the KdV equation in its usual form. Higher derivatives would
occur at higher order expansions.
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