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Handout 14b: Nonlinear Water Waves (cont’d)

The KdV equation can be derived under the restrictions of shallow water (wavelength longer ℓ long
compared with depth h) and small (but finite) amplitude a compared with h, i.e.,

a ≪ h ≪ ℓ. (1)

One assumes an inviscid irrotational flow u = ∇φ, so the governing equation is the Bernoulli equation,

∂tφ + 1
2 (∇φ)2 + P/ρ + gz = 0, ∇2φ = 0. (2)

We first need to discuss boundary conditions.

1 Boundary conditions

At rest, the water surface is assumed to be at z =, so the bottom is at z = −h, and the normal velocity
vanishes there, so

φ,z = 0 (at z = −h). (3)

Next, the surface is assumed to be at z = ζ. Since the pressure vanishes zero, we have

∂tφ
s + 1

2 (∇φs)2 + gζ = 0. (4)

where the superscript s refers to the surface. The location of the surface is described by the function
ζ = ζ(x, t), and we assume that

Dζ/Dt = uz ≡ φ,z. (5)

Since Dζ/Dt = ∂tζ + uxζ,x = ∂tζ + φ,xζ,x, we can also write

∂tζ + φ,xζ,x = φ,z (at the surface). (6)

We note in passing that the linearized form of the two equations can be combined to ∂2
t φ + gφ,z = 0,

which is an equation we have encountered in handout 11, see Eq. (16) of that handout.

2 Linear wave solutions

Figure 1: Dispersion relation.

The dashed line shows the result

without the tanh factor.

Assuming wave-like solutions of the form

φ = f(z) sin(kx − ωt), (7)

which satisfy ∇2φ = 0, the f has to be of the form f = f1e
kz + f2e

−kz.
To obey f,z = 0, we have to have f1kekz − f2ke−kz = 0 at z = −h, and
thus f1ke−kh − f2kekh = 0, or f2/f1 = e−2kh and thus

f(z) = A
(

ekz + e−kz−2kh
)

= Ae−kh
(

ek(z+h) + e−k(z+h)
)

, (8)

and therefore f(z) = 2Ae−kh cosh k(z + h).
Inserting φ = 2Ae−kh cosh k(z + h) sin(kx − ωt) into ∂2

t φ + gφ,z = 0,
and noting that f,z = 2Ake−kh sinh k(z + h), we have

−ω2 2Ae−kh cosh k(z + h) sin(kx − ωt) + 2Agk e−kh cosh k(z + h) sin(kx − ωt) = 0, (9)

and therefore ω2 = gk tanh k(z + h) at the surface at z = 0, so

ω2 = gk tanh kh. (10)

This is shown in Figure 1 and compared with ω2 = gk.
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3 Perturbative nonlinear wave equation

We now make the following ansatz for φ, which must obey ∇2φ = 0,

φ =

∞
∑

n=0

znφn(x, t). (11)

To work with this, it is useful to write out the first few terms:

φ = φ0 + zφ1 + z2φ2 + z3φ3 + z4φ4 + ... (12)

In order that this satisfies ∇2φ = 0, let us write down the second x and z derivatives,

φ,xx = φ0,xx + zφ1,xx + z2φ2,xx + z3φ3,xx + z4φ4,xx + ... (13)

φ,zz = 2φ2 + 3 · 2 zφ3 + 4 · 3 z2φ4 + ... (14)

Matching equal powers of z leads to the following recursive relations

φ0,xx + 2φ2 = 0, (15)

φ1,xx + 3 · 2φ3 = 0, (16)

φ2,xx + 4 · 3φ4 = 0, (17)

or, more generally
φn,xx + (n + 2)(n + 1)φn+2 = 0. (18)

Next, making use of the bottom boundary condition uz = 0, i.e., φ,z = 0, we find φ1 = 0, and, because
of Equation (18), all odd terms vanish, i.e., φ3 = φ5 = ... = 0. With this, we can now write φ as

φ = φ0 + z2 φ2 + z4 φ4 + ... (19)

Inserting the recursive relations, we have φ2 = − 1
2φ0,xx and

φ4 = −φ2,xx

4 · 3
= +

φ0,xxxx

4!
. (20)

Let us use ϕ ≡ φ0 as a shorthand, and so

φ = ϕ − 1

2!
z2 ϕ′′ +

1

4!
z4 ϕ(iv) − ... (21)

With this, we find

ux = φ,x = ϕ′ − 1

2!
z2 ϕ′′′ +

1

4!
z4 ϕ(v) − ... (22)

and

uz = φ,z = −z ϕ′′ +
1

3!
z3 ϕ(iv) − ... (23)

This has to be inserted back into the full time-dependent equation (2). Furthermore, to obey the ordering
(1), we define ǫ = A/h for the amplitude A and δ = (h/ℓ)2 for the height. Solving order by order, one
arrives eventually at the equation

ζ,t + cζ,x + 3
2

c

h
ζζ,x + 1

6 ch2 ζ,xxx = 0, (24)

to lowest order. Here, c =
√

gh is the wave speed, and cζ,x is just an advection term that can be removed
by going into a comoving frame to obtain the KdV equation in its usual form. Higher derivatives would
occur at higher order expansions.
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