\relax 
\citation{Dav15}
\citation{SJO90}
\citation{PWP98}
\citation{SJO90}
\citation{PWP98}
\citation{Kaneda}
\citation{Fal94}
\@writefile{toc}{\contentsline {section}{\numberline {1}Appearance of turbulence}{1}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Examples of vortex tubes in homogeneous turbulence from \cite  {SJO90} (left panel) and \cite  {PWP98} (right panel).  }}{1}}
\newlabel{Vincent}{{1}{1}}
\citation{Kaneda}
\citation{HB06}
\citation{Kaneda}
\citation{HB06}
\bibcite{Dav15}{{1}{2015}{{Davidson}}{{}}}
\bibcite{Fal94}{{2}{1994}{{Falkovich}}{{}}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces  Sketch illustrating the principle axes in a local shear flow. }}{2}}
\newlabel{strain1}{{2}{2}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces }}{2}}
\newlabel{peigenvals}{{3}{2}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Spectra}{2}}
\bibcite{HB06}{{3}{2006}{{Haugen \& Brandenburg}}{{}}}
\bibcite{Kaneda}{{4}{2003}{{Kaneda et al.}}{{}}}
\bibcite{PWP98}{{5}{1998}{{Porter et al.}}{{}}}
\bibcite{SJO90}{{6}{1990}{{She et al.}}{{}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Comparison of energy spectra of the $4096^3$ meshpoints run \cite  {Kaneda} (solid line) and $512^3$ meshpoints runs with hyperviscosity (dash-dotted line) and Smagorinsky viscosity (dashed line). (In the hyperviscous simulation we use $\nu _3=5 \times 10^{-13}$.) The Taylor microscale Reynolds number of the Kaneda simulation is 1201, while the hyperviscous simulation of Ref.\nobreakspace  {}\cite  {HB06} has an approximate Taylor microscale Reynolds number of $340<\unhbox \voidb@x \hbox {Re}_\lambda <730$. For the Smagorinsky simulation the value of $\unhbox \voidb@x \hbox {Re}_\lambda $ is slightly smaller. }}{3}}
\newlabel{kan_hyp_smag}{{4}{3}}