\relax \citation{Dav15} \citation{SJO90} \citation{PWP98} \citation{SJO90} \citation{PWP98} \citation{Kaneda} \citation{Fal94} \@writefile{toc}{\contentsline {section}{\numberline {1}Appearance of turbulence}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Examples of vortex tubes in homogeneous turbulence from \cite {SJO90} (left panel) and \cite {PWP98} (right panel). }}{1}} \newlabel{Vincent}{{1}{1}} \citation{Kaneda} \citation{HB06} \citation{Kaneda} \citation{HB06} \bibcite{Dav15}{{1}{2015}{{Davidson}}{{}}} \bibcite{Fal94}{{2}{1994}{{Falkovich}}{{}}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Sketch illustrating the principle axes in a local shear flow. }}{2}} \newlabel{strain1}{{2}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces }}{2}} \newlabel{peigenvals}{{3}{2}} \@writefile{toc}{\contentsline {section}{\numberline {2}Spectra}{2}} \bibcite{HB06}{{3}{2006}{{Haugen \& Brandenburg}}{{}}} \bibcite{Kaneda}{{4}{2003}{{Kaneda et al.}}{{}}} \bibcite{PWP98}{{5}{1998}{{Porter et al.}}{{}}} \bibcite{SJO90}{{6}{1990}{{She et al.}}{{}}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Comparison of energy spectra of the $4096^3$ meshpoints run \cite {Kaneda} (solid line) and $512^3$ meshpoints runs with hyperviscosity (dash-dotted line) and Smagorinsky viscosity (dashed line). (In the hyperviscous simulation we use $\nu _3=5 \times 10^{-13}$.) The Taylor microscale Reynolds number of the Kaneda simulation is 1201, while the hyperviscous simulation of Ref.\nobreakspace {}\cite {HB06} has an approximate Taylor microscale Reynolds number of $340<\unhbox \voidb@x \hbox {Re}_\lambda <730$. For the Smagorinsky simulation the value of $\unhbox \voidb@x \hbox {Re}_\lambda $ is slightly smaller. }}{3}} \newlabel{kan_hyp_smag}{{4}{3}}