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Handout 16: The bottleneck in turbulence

At large wavenumbers k, the energy spectrum

E(k) = ǫ2/3 k5/3 f(k) (1)

is expected to have a viscous cutoff that is described by the function f(k). However, f(k) decreases not
necessarily monotonically with k.

1 Navier–Stokes equation in Fourier space

For an incompressible fluid, the Fourier-transformed Navier–Stokes equation for ûk(t) can be written in
the form

d

dt
ûk = −ikP̂k −

∑

k=p+q

(ûp · iq) ûq − νk2ûk. (2)

The pressure satisfies a Poisson-type equation, so

k2Pk = ik
∑

k=p+q

(ûp · iq) ûq (3)

and therefore

(ikPk)i = −
kikj

k2

∑

k=p+q

(ûp · iq) ûq (4)

or
d

dt
ˆ̂uk = −P(k)

∑

k=p+q

(ûp · iq) ûq − νk2ûk, (5)

where Pij = δij − kikj/k2 is the projection operator, which projects out the non-solenoidal (irrotational)
components.

An important point here is the fact that all nonlinear inactions proceed via triads in k space where
k = p+q. It turns out that viscosity suppresses those triads that reach deep into the dissipative subrange.
This makes nonlinear energy transfer less efficient and can lead to a pileup of energy in the inertial range
shortly before the dissipative subrange (Falkovich, 1994). This is referred to as the bottleneck effect.
To understand why it has not been a prominent effect in wind tunnel and atmospheric turbulence, we
have to realize that most observed spectra have been obtained using hot-wire velocimetry and the Taylor
hypothesis. We thus have to understand the relation between 1-D and 3-D energy spectra.

2 Relation between 1-D and 3-D energy spectra

To derive the relation between the three-dimensional spectrum E(k) and the total one-dimensional spec-
trum E1D(k) ≡ EL(k) + 2ET(k), we consider a periodic box of volume V = LxLyLz with a turbulent
velocity field u(x), which has the Fourier transform

û(k) =
1

√

(2π)3V

∫

V

eik·xu(x) dx3, (6)

with the inversion

u(x) =

√

V

(2π)3

∫

e−ik·xû(k) dk3. (7)

The one-dimensional kinetic energy spectrum is

E1D(kz) = 2

∫∫

〈

|û(k)|2
〉

2
dkx dky, (kz ≥ 0), (8)
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where 〈·〉 denotes an ensemble average, and k = (kx, ky, kz). The factor 2 in Eq. (8) accounts for the fact
that E1D does not distinguish between positive and negative kz. Normalization of E1D(kz) is such that

∫

∞

0

E1D(kz) dkz =
u2

rms

2
≡

1

V

∫

V

〈

|u(x)|2
〉

2
dx3. (9)

Equation (8) can also be written as the xy-average

E1D(kz) =
1

LxLy

∫

〈

|ũ(x, y, kz)|
2
〉

dxdy (10)

and is for homogeneous turbulence equal to
〈

|ũ(x, y, kz)|
2
〉

at any point (x, y).
The three-dimensional velocity energy spectrum is given by

E(k) ≡

∫

4π

〈

|û(k)|2
〉

2
k2 dΩk, (11)

where dΩk denotes the solid angle element in k-space. E(k) satisfies the relation

∫

∞

0

E(k) dk =
u2

rms

2
. (12)

If u is statistically isotropic in the sense that the ensemble average of the spectral energy of the
velocity

〈

|u(k)|2
〉

is only a function of k = |k|, then E(k) becomes

E(k) = 4πk2

〈

|û(k)|2
〉

2
. (13)

To evaluate E1D in this case, we introduce cylindrical coordinates (kr, φ, kz) in k-space and write the
double integral (8) in the form

E1D(kz) = 2

∫

∞

0

〈

|û(k)|2
〉

2
2πkr dkr

= 4π

∫

∞

kz

〈

|û(k)|2
〉

2
k dk, (14)

since k2 = k2
r + k2

z , and therefore k2
r = k2 − k2

z . Comparing with Eq. (13), we see that

E1D(kz) =

∫

∞

kz

E(k)

k
dk, (15)

the inversion of which gives

E(k) = −k
dE1D(k)

dk
= −E1D

d lnE1D(k)

d ln k
. (16)

References

Dobler, W., Haugen, N. E. L., Yousef, T. A., & Brandenburg, A., “Bottleneck effect in three-dimensional
turbulence simulations,” Phys. Rev. E 68, 026304 (2003).

Falkovich, G., “Bottleneck phenomenon in developed turbulence,” Phys. Fluids 6, 1411-1414 (1994).

$Header: /var/cvs/brandenb/tex/teach/ASTR_5410/16_Bottleneck/notes.tex,v 1.2 2016/11/09 13:42:46 brandenb Exp $

2


