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Handout 16: The bottleneck in turbulence

At large wavenumbers k, the energy spectrum
E(k) = ek f(k) (1)

is expected to have a viscous cutoff that is described by the function f(k). However, f(k) decreases not
necessarily monotonically with k.

1 Navier—Stokes equation in Fourier space

For an incompressible fluid, the Fourier-transformed Navier—Stokes equation for #(¢) can be written in
the form
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The pressure satisfies a Poisson-type equation, so
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where P;; = 6;; — kik;/ k? is the projection operator, which projects out the non-solenoidal (irrotational)
components.

An important point here is the fact that all nonlinear inactions proceed via triads in k space where
k = p+q. It turns out that viscosity suppresses those triads that reach deep into the dissipative subrange.
This makes nonlinear energy transfer less efficient and can lead to a pileup of energy in the inertial range
shortly before the dissipative subrange (Falkovich, 1994). This is referred to as the bottleneck effect.
To understand why it has not been a prominent effect in wind tunnel and atmospheric turbulence, we
have to realize that most observed spectra have been obtained using hot-wire velocimetry and the Taylor
hypothesis. We thus have to understand the relation between 1-D and 3-D energy spectra.

2 Relation between 1-D and 3-D energy spectra

To derive the relation between the three-dimensional spectrum E(k) and the total one-dimensional spec-
trum Eqp(k) = EL(k) + 2Ev(k), we consider a periodic box of volume V = L,L, L, with a turbulent
velocity field w(x), which has the Fourier transform

(k) k() da, (6)

u(z) = /% /e—ik%(k) dk®. (7)

The one-dimensional kinetic energy spectrum is

with the inversion

Eip(k.) = 2//dem dky, (k. >0), (8)



where (-) denotes an ensemble average, and k = (k,, ky, k,). The factor 2 in Eq. (8) accounts for the fact
that E1p does not distinguish between positive and negative k,. Normalization of Ejp(k,) is such that
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Equation (8) can also be written as the zy-average
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and is for homogeneous turbulence equal to <|f1,(9c, Y, kz)|2> at any point (z,y).
The three-dimensional velocity energy spectrum is given by

E(k) = /4 WT’Q)W/@? d€y, (11)

where d€) denotes the solid angle element in k-space. E(k) satisfies the relation
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If u is statistically isotropic in the sense that the ensemble average of the spectral energy of the
velocity (|u(k)|?) is only a function of k = |k|, then E(k) becomes

E(k) = 47rk2<|ﬁ(7§)|2>. (13)

To evaluate Eip in this case, we introduce cylindrical coordinates (k,, ¢, k.) in k-space and write the
double integral (8) in the form
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since k% = k2 + k2, and therefore k2 = k* — k2. Comparing with Eq. (13), we see that
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the inversion of which gives
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