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Handout 19: Inverse Cascades and Inverse Transfer

Inverse cascades are not that uncommon, but they are usually always related to some extra conser-
vation laws in turbulence. Magnetic helicity in 3-D MHD is perhaps the most famous one, but in 2-D
MHD we have the conservation of 〈A2〉 and in 2-D HD we have the conservation of 〈ω2〉. In closed or
periodic domains we have

d

dt
〈ω2〉 = −2ν〈(∇ × ω)2〉 (in 2-D HD), (1)

d

dt
〈A2〉 = −2η〈B2〉 (in 2-D MHD), (2)

d

dt
〈A · B〉 = −2η〈J · B〉 (in 3-D MHD), (3)

The consequences can be dramatic. Below some examples.

1 2-D Hydrodynamic Turbulence

The possibility of an inverse cascase in 2-D hydrodynamic turbulence was demonstrated conclusively by
Frisch & Sulem (1984); see Figure 1 the spectra from their paper. In this case, energy was injected at
intermediate lenth scales. This is important, because otherwise there is no room for the inverse cascase
to move energy to larger length scales.

Figure 1: Forced 2-D hydrodynamic turbulence (Frisch & Sulem, 1984).
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2 3-D MHD Turbulence

The case of decaying turbulence is perhaps most dramatic, because we actually see a real increase of
spectral energy at small wavenumbers; see Figure 2. To understand what happens, we first need to
explain the realizability condition, which means that magnetic helicity can only be realized in a field up
to a certain value.

Figure 2: Comparsion of spectra of decaying MHD turbulence with helicity (left) and without (right).

3 Realizability Condition

Magnetic energy and helicity spectra are usually calculated as

Mk =
1

2

∫

k-shell
B∗

k
· Bk k2 dΩk, (4)

Hk =
1

2

∫

k-shell
(A∗

k
· Bk + Ak · B∗

k
) k2 dΩk, (5)

where dΩk is the solid angle element in Fourier space, Bk = ik × Ak is the Fourier transform of the
magnetic field, and Ak is the Fourier transform of the vectors potential. These spectra are normalized
such that

∫ ∞

0

Hk dk = 〈A · B〉V ≡ H, (6)

∫ ∞

0

Mk dk = 〈 1
2B2〉V ≡ M, (7)

where H and M are magnetic helicity and magnetic energy, respectively, and angular brackets denote
volume averages.

It is convenient to decompose the Fourier transformed magnetic vector potential, Ak, into a longitu-
dinal component, h‖, and eigenfunctions h± of the curl operator. This decomposition has been used in
studies of turbulence Waleffe (1993). We have seen such functions as Beltrami waves, but they can be
oriented in arbitrary directions.

h(k) = R · h(k)(nohel) with Rij =
δij − iσǫijkk̂√

1 + σ2
, (8)

where the parameter σ characterizes the fractional helicity of f , and

h(k)(nohel) = (k × ê) /
√

k2 − (k · ê)2, (9)

is a non-helical forcing function. Here ê is an arbitrary unit vector not aligned with k, k̂ is the unit
vector along k, and |h|2 = 1.
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Using this decomposition we can write the Fourier transformed magnetic vector potential as

Ak = a+
k
h+

k
+ a−

k
h−

k
+ a

‖
k
h
‖
k
, (10)

with
ik × h±

k
= ±kh±

k
, k = |k|, (11)

and
〈h+

k

∗ · h+
k
〉 = 〈h−

k

∗ · h−
k
〉 = 〈h‖

k

∗
· h‖

k
〉 = 1, (12)

where asterisks denote the complex conjugate, and angular brackets denote, as usual, volume averages.

The longitudinal part a
‖
k
h
‖
k

is parallel to k and vanishes after taking the curl to calculate the magnetic
field. In the Coulomb gauge, ∇ · A = 0, the longitudinal component vanishes altogether.

The (complex) coefficients a±
k

(t) depend on k and t, while the eigenfunctions h±
k

, which form an
orthonormal set, depend only on k and are given by

h±
k

=
1√
2

k × (k × e) ∓ ik(k × e)

k2
√

1 − (k · e)2/k2
, (13)

where e is an arbitrary unit vector that is not parallel to k. With these preparations we can write the
magnetic helicity and energy spectra in the form

Hk = k(|a+
k |2 − |a−

k |2)V, (14)

Mk = 1
2k2(|a+

k |2 + |a−
k |2)V, (15)

where V is the volume of integration. (Here again the factor µ−1
0 is ignored in the definition of the

magnetic energy.) From Equations (14) and (15) one sees immediately that

1
2k|Hk| ≤ Mk, (16)

which is also known as the realizability condition. A fully helical field has therefore Mk = ± 1
2kHk.

For further reference we now define power spectra of those components of the field that are either
right or left handed, i.e.

H±
k = ±k|a±

k |2V, M±
k = 1

2k2|a±
k |2V. (17)

Thus, we have Hk = H+
k + H−

k and Mk = M+
k + M−

k . Note that H±
k and M±

k can be calculated without
explicit decomposition into right and left handed field components using

H±
k = 1

2 (Hk ± 2k−1Mk), M±
k = 1

2 (Mk ± 1
2kHk). (18)

This method is significantly simpler than invoking explicitly the decomposition in terms of a±
k

h±
k

.
In Section ?? plots of M±

k will be shown and discussed in connection with turbulence simulations.
Here the turbulence is driven with a helical forcing function proportional to h+

k
; see Equation (13).

4 Argument for inverse cascade

The occurrence of an inverse cascade can be understood as the result of two waves (wavenumbers p and q)
interacting with each other to produce a wave of wavenumber k. The following argument is due to Frisch
et al. (1975). Assuming that during this process magnetic energy is conserved together with magnetic
helicity, we have

Mp + Mq = Mk, (19)

|Hp| + |Hq| = |Hk|, (20)

where we are assuming that only helicity of one sign is involved. Suppose the initial field is fully helical
and has the same sign of magnetic helicity at all scales, we have

2Mp = p|Hp| and 2Mq = q|Hq|, (21)

and so Equation (19) yields
p|Hp| + q|Hq| = 2Mk ≥ k|Hk|, (22)
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where the last inequality is just the realizability condition (16) applied to the target wavenumber k after
the interaction. Using Equation (20) in Equation (22) we have

p|Hp| + q|Hq| ≥ k(|Hp| + |Hq|). (23)

In other words, the target wavevector k after the interaction of wavenumbers p and q satisfies

k ≤ p|Hp| + q|Hq|
|Hp| + |Hq|

. (24)

The expression on the right hand side of Equation (24) is a weighted mean of p and q and thus satisfies

min(p, q) ≤ p|Hp| + q|Hq|
|Hp| + |Hq|

≤ max(p, q), (25)

and therefore
k ≤ max(p, q). (26)

In the special case where p = q, we have k ≤ p = q, so the target wavenumber after interaction is
always less or equal to the initial wavenumbers. In other words, wave interactions tend to transfer
magnetic energy to smaller wavenumbers, i.e. to larger scale. This corresponds to an inverse cascade.
The realizability condition, 1

2k|Hk| ≤ Mk, was the most important ingredient in this argument.
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