\relax \citation{Bou77} \citation{Dav15} \citation{War65} \citation{GH84} \citation{GH84} \citation{Hathaway} \citation{GH84} \citation{Hathaway} \citation{GH84} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces }}{1}} \newlabel{Joseph_Boussinesq}{{1}{1}} \newlabel{ReynoldsStress}{{1}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces }}{1}} \newlabel{Hathaway13a}{{2}{1}} \citation{War65} \citation{War65} \citation{War65} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces }}{2}} \newlabel{Ward65a}{{3}{2}} \@writefile{toc}{\contentsline {section}{\numberline {1}Computing the Reynolds stress}{2}} \newlabel{dotQ1}{{7}{2}} \newlabel{dotQ2}{{8}{2}} \citation{KKB14} \citation{KKB14} \citation{KKB14} \citation{KKB14} \citation{KKB14} \citation{KKB14} \citation{War16} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Time-averaged rotation profiles from Runs\nobreakspace {}A--E showing $\overline \Omega $ in nHz. Adapted from \cite {KKB14} }}{3}} \newlabel{fig:pOm}{{4}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Solar versus anti-solar rotation}{3}} \@writefile{toc}{\contentsline {section}{\numberline {3}Another derivation}{3}} \newlabel{MTA}{{17}{3}} \citation{Langfellner} \citation{Hathaway} \citation{Langfellner} \citation{Hathaway} \citation{Langfellner} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Radial (left panel) and latitudinal (right panel) differential rotation from Runs\nobreakspace {}A--E (diamonds), and Set\nobreakspace {}D (blue dotted line with asterisks) and B (red dashed line with triangles). Adapted from \cite {KKB14} }}{4}} \newlabel{fig:pDR}{{5}{4}} \newlabel{ur}{{18}{4}} \newlabel{utheta}{{19}{4}} \newlabel{uphi}{{20}{4}} \newlabel{dotQ}{{21}{4}} \bibcite{Bou77}{{1}{1877}{{Boussinesq}}{{}}} \bibcite{Dav15}{{2}{2015}{{Davidson}}{{}}} \bibcite{GH84}{{3}{1984}{{Gilman \& Howard}}{{}}} \bibcite{Hathaway}{{4}{2013}{{Hathaway et al.}}{{}}} \bibcite{KKB14}{{5}{2014}{{K\"apyl\"a et al.}}{{}}} \bibcite{Langfellner}{{6}{2015}{{Langfellner et al.}}{{}}} \bibcite{War65}{{7}{1965}{{Ward}}{{}}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces From left to right: Time-averaged Reynolds stresses $Q_{r\phi }$ and $Q_{\theta \phi }$ normalized by $\nu _{\rm t}\Omega _\odot $, the turbulent viscosity divided by the molecular viscosity $\nu _{\rm t}/\nu $, $\Lambda _{\rm V}$ and $\Lambda _{\rm H}$ normalized by $\nu _{\rm t}$, and the anisotropy parameters $A_{\rm V}$ and $A_{\rm H}$. Top row: Run\nobreakspace {}A; bottom row: Run\nobreakspace {}D1. In the fifth column we only use data some degrees away from the equator so as to avoid the singularity associated with the division by $\mathop {\mathgroup \symoperators cos}\nolimits \theta $. The contours in the lower row are oversaturated near the $\theta $-boundaries in order to highlight the features at lower latitudes. Adapted from \cite {KKB14} }}{5}} \newlabel{fig:Reynolds}{{6}{5}} \@writefile{toc}{\contentsline {section}{\numberline {4}Reynolds stress in the supergranulation layer}{5}} \bibcite{War16}{{8}{2016}{{Warnecke et al.}}{{}}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Comparison of $\overline {u_\theta u_\phi }$ obtained from local helioseismology \citep [red; see][]{Langfellner} and Doppler measurements \citep [blue; see][]{Hathaway}. }}{6}} \newlabel{fig:Rthetaphi_SG_GC}{{7}{6}}