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Handout 21: Stellar differential rotation

Figure 1: Joseph V.
Boussinesq (1842–1929)

The first turbulence model goes back to Boussinesq (1877) and assumes that
the momentum transfer caused by turbulent eddies can be modeled with an
eddy viscosity, in analogy with the momentum transfer caused by the molecular
motion in a gas that can be described by a molecular viscosity.1 The Reynolds2

stress is then given by (see pp. 176–180 Davidson, 2015)

uiuj = −νt

(

U i,j + U i,j

)

. (1)

At the time, this was just a postulate, but it can also be computed rigorously
under the assumption that the turbulent eddies are small compared with the
typical scales of the mean flow and that the Reynolds number is small. Anal-
ogously to the turbulent magnetic diffusivity, the value of νt is proportional to
τu2, but with a prefactor that is usually not 1/3, but between 2/15 (for small
Reynolds numbers) and 4/15 (for large Reynolds numbers).

Alternatively, one can use Equation (1) to “measure” νt by measuring uiuj

in a given shear flow. This works well for imposed shear flows such as the flows modeled in the shearing
box approximation, but it fails when applied to the solar differential rotation, where we one can measure
the correlation between uθ and uφ. This was first done by Ward (1965) for sunspot groups and later
by Gilman & Howard (1984) for individual sunspots. Nowadays, we can use Dopplergrams from the
Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Such a
result is shown in Figure 2.

Figure 2: Left: Figure from Gilman & Howard (1984) showing the correlation between longitudinal and
latitudinal sunspot proper motions versus latitude. They analyzed the Greenwich data record, covering
62 years. Right: Figure from Hathaway et al. (2013) showing uθuφ versus latitude using HMI data
Dopplergrams.

In meteorology, one usually works with latitude rather than colatitude. This is also what Gilman
& Howard (1984) did, which explains the different signs in Figure 2. So, uθuφ > 0 in the north and
negative in the south. Let us compare this with the Boussinesq ansatz (as it is usually called). Applied
to spherical geometry, assuming axisymmetry for the mean flow, we have

uθuφ = −νt sin θ
∂Ω

∂θ
. (2)

1http://www.cfd-online.com/Wiki/Boussinesq_eddy_viscosity_assumption
2Osborne Reynolds FRS (1842–1912) was born in the same year as Boussinesq. He came up with the Reynolds decom-

position, U = U + u, and the Reynolds rules, all of which are important for developing a theory for the Reynolds stress
tensor.
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Here, Ω = Uφ/r sin θ is just a shorthand for the longitudinal mean velocity in a non-rotating frame of
reference. This Ω is therefore not to be confused with the vector Ω is a nonrotating frame of reference,
in which Ω leads to a Coriolis force, for example, but not so Ω.

Let us now think about the signs. uθuφ is measured too be positive in the north, but in the north,
Ω increases with increasing θ, i.e., as we go from the pole toward the equator. Thus, ∂Ω/∂θ is positive,
and so is sin θ, so the signs do not match. This was recognized early on, as is evidenced by a statement
from Ward (1965); see Figure 3.

Figure 3: Statement from Ward (1965). He goes on to say that if this source of momentum were shut
off, this layer of the Sun would reach solid rotation in about 103 days.

1 Computing the Reynolds stress

We show here two different calculations. We begin with a local and simplistic calculation (neglecting
the pressure and nonlinear terms) in a rotating frame of reference using the Coriolis force in Cartesian
coordinates, so the partial time derivative of the velocity fluctuation is

u̇i = ... − 2ǫiklΩkul + ... (3)

To compute the time derivative of the Reynolds stress Qij ≡ uiuj , let us also write

u̇j = ... − 2ǫjklΩkul + ... (4)

so that Q̇ij = u̇iuj + uiu̇j is given by

Q̇ij = ... − 2ǫiklΩkujul − 2ǫjklΩkuiul + diffusive terms. (5)

Thus, for example,
Q̇xy = ... − 2ǫxklΩkuyul − 2ǫyklΩkuxul + ... (6)

There will be only 2 terms from each of the ǫ terms, i.e. ǫxyz and ǫxzy as well as ǫyzx and ǫyxz. Thus, we
have

Q̇xy = ... − 2ǫxyzΩyuyuz − 2ǫxzyΩzuyuy − 2ǫyzxΩzuxux − 2ǫyxzΩxuxuz + ... (7)

Thinking “perturbatively”, where we want to explain off-diagonal terms of Qij being produced by tur-
bulence in the presence of rotation, we can neglect off-diagonal terms on the rhs of Equation (7). Using
also ǫxzy = −1 and ǫyzx = 1, we have

Q̇xy = ... − 2ǫxzyΩzuyuy − 2ǫyzxΩzuxux + ... = ... + 2Ωz

(

u2
y − u2

x

)

+ ... (8)

So, in a rotating system, off-diagonal terms are being produced if the turbulence is anisotropic and thus
u2

y − u2
x 6= 0.

Let us apply this now to spherical geometry by making the identification

(x, y, z) → (θ, φ, r). (9)

In that case we have
Q̇θφ = ... + 2Ωr

(

u2

φ − u2

θ

)

+ ... (10)

Thus, in the north where Ωr > 0, and if the turbulent fluctuations in the longitudinal direction are
stronger than the latitudinal one (which is often found to be the case in rotating systems), we expect a
positive contribution to Q̇θφ. It is this terms which drives latitudinal differential rotation and balances
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Figure 4: Time-averaged rotation profiles from Runs A–E showing Ω in nHz. Adapted from Käpylä et
al. (2014)

the diffusive term, νt sin θ∂Ω/∂θ, which must therefore also be positive. In the south, Ωr < 0, and in
general we have Ωr = Ωcos θ, so

Q̇θφ = ... + 2Ωcos θ
(

u2

φ − u2

θ

)

+ ... (11)

Similar arguments also apply to radial differential rotation. Making this time the identification

(x, y, z) → (r, φ,−θ). (12)

we have
Q̇rφ = ... + 2Ωθ

(

u2

φ − u2
r

)

. (13)

Here, Ωθ = Ωsin θ is positive in both hemispheres.
We have seen that the Λ effect is related to anisotropy parameters, defined as

AM =
u′

θ
2
− u′

r
2

u′

θ
2 + u′

r
2,

(14)

AV =
u′

φ
2
− u′

r
2

u′

φ
2 + u′

r
2,

(15)

AH =
u′

φ
2
− u′

θ
2

u′

φ
2 + u′

θ
2.

(16)

These are shown in some of the plots in the following section.

2 Solar versus anti-solar rotation

Work over the last 5–8 years has established that the Sun should show anti-solar rotation, if all input
parameters are taken at face value.

3 Another derivation

We reproduce here the derivation of Warnecke et al. (2016) and denote partial time derivatives by a dot
and compute

Q̇ij = u̇′
iu

′
j + u′

iu̇
′
j (17)
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Figure 5: Radial (left panel) and latitudinal (right panel) differential rotation from Runs A–E (diamonds),
and Set D (blue dotted line with asterisks) and B (red dashed line with triangles). Adapted from Käpylä
et al. (2014)

in a non-rotating frame of reference (U = u + êφΩ0r sin θ), using

u̇′

r = 2(u′

θUθ + u′

φUφ)/r + ... , (18)

u̇′

θ = −(u′

rUθ + Uru
′

θ)/r + 2u′

φUφ cot θ/r + ... , (19)

u̇′

φ = −2(u′

rUφ + Uru
′

φ)/r − 2(u′

θUφ + Uθu
′

φ) cot θ/r + ... , (20)

where the three dots denote nonlinear and gradient terms of ur, uθ, and uφ/r sin θ that will be neglected.
Below we also consider the case where gradient terms of uθ will be included. In other words, the base
state corresponds to rigid rotation with a meridional flow uθ ∝ r sin θ, and gradients around this state
are neglected.

Inserting Equations (18)–(20) into Equation (17), we obtain an expression of the form

Q̇ij = LijkUk + Rij , (21)

where Lijk is a rank 3 tensor (related to the coefficients of the Λ effect) and Rij stands for all remaining
terms, in particular those that stem from the triple correlations. In the minimal tau approximation we
replace those by a relaxation term with the turbulent correlation time τ , that is Rij = −Qij/τ . Inserting

this into Equation (21) and assuming a steady state, that is Q̇ij = 0, using that the background velocity

correlation is of the form u′
iu

′
j = diag(u′

r
2, u′

θ
2, u′

φ
2), we have

Qrθ = 2τ(u′

θ
2
− u′

r
2)Uθ/r + ... , (22)

Qrφ = 2τ(u′

φ
2
− u′

r
2)Ω sin θ + ... , (23)

Qθφ = 2τ(u′

φ
2
− u′

θ
2)Ω cos θ + ... , (24)

where Uφ has been replaced by Ωr sin θ and gradient terms of uθ/r are assumed to vanish, so that
Equation (19) yields u̇′

θ = −2(u′
rUθ + Uru

′

θ)/r + ... . We note that, while Qrφ and Qθφ are proportional
to Ω, the meridional component Qrθ is proportional to Uθ (≡ uθ). If we were to allow uθ/r to have

non-vanishing gradients, we would have Qrθ = τ(2u′

θ
2
− u′

r
2)Uθ/r + ... . In that case, under isotropic

conditions (u′
r
2 = u′

θ
2 = u′

φ
2), ΛV = ΛH = 0, but ΛM is non-vanishing and would be positive. Therefore,

the non-diffusive contribution to Qrθ would be negative for a poleward flow. This is in agreement with
the profiles of ΛM and Qrθ in the surface regions of our simulations.
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Figure 6: From left to right: Time-averaged Reynolds stresses Qrφ and Qθφ normalized by νtΩ⊙, the tur-
bulent viscosity divided by the molecular viscosity νt/ν, ΛV and ΛH normalized by νt, and the anisotropy
parameters AV and AH. Top row: Run A; bottom row: Run D1. In the fifth column we only use data
some degrees away from the equator so as to avoid the singularity associated with the division by cos θ.
The contours in the lower row are oversaturated near the θ-boundaries in order to highlight the features
at lower latitudes. Adapted from Käpylä et al. (2014)

4 Reynolds stress in the supergranulation layer

Using local helioseismology, Langfellner et al. (2015) measured the uθuφ correlation and found the opposite
sign and a ten times larger value; see Figure 7. This makes sense, because previous measurements are
concerned with large length scales and reflect the flows at larger depths, while Langfellner’s values apply
to the supergranulation layer, the top 3 per cent of the Sun. Here, the horizontal flow correlation comes
as a consequence of the Sun’s differential rotation and is consistent with a turbulent diffusive response,
while in deeper layers, anti-diffusive effects prevail.
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Figure 7: Comparison of uθuφ obtained from local helioseismology (red; see Langfellner et al., 2015) and
Doppler measurements (blue; see Hathaway et al., 2013).
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