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Handout 22: Turbulent transport

By turbulent transport one usually means the effect of turbulence on the averaged properties of the
system. The turbulent transport of a passive scalar is in many ways the simplest problem, but in some
ways it is not sufficiently generic to be able to identify the broader structure behind this concept. A
better example that we have already encountered is the turbulent transport of magnetic field. (We have
also already encountered the turbulent transport of momentum, but that is a harder problem if one wants
to do it rigorously.

A general way of computing α and ηt is the test-field method. It was invented by Schrinner et al.
(2005, 2007) and since then be used for many different applications (Brandenburg, 2005; Brandenburg et
al., 2008).

1 Test-field method

The theory of turbulent resistivity is in many ways more developed than the theory of turbulent viscosity.
In dynamo theory it has recently become possible to determine quite accurately not only the turbulent
resistivity, but also its full tensorial form and other components that can be non-dissipative and hence
important for dynamo action. While in the hydrodynamic case one is interested in the correlation uiuj ,
one is here interested in the correlation ujbj , or more specifically in the electromotive force E i = ǫijkujbj .
Assuming that the mean field is spatially smooth (which may not be the case in practice) one can truncate
the expression for E i in terms of Bj and its derivatives after the first derivative, so one has

E i = αijBj + ηijkBj,k. (1)

The components of αij tensor are usually quite easily determined from simulations by imposing a uniform
magnetic field Bj and measuring the resulting electromotive force E i, so that αij = E i/Bj is obtained
straightforwardly. The reason this works is because for a uniform field all derivatives of Bj vanish, so
there are no higher order terms. Calculating the components of ηijk is usually harder, especially when
the mean field may no longer be smooth and its derivatives may vanish in places. A method that has
been used for accretion disc turbulence is based on a fitting procedure of the measured mean field and
the mean electromotive force to Equation (1) by calculating moments of the form 〈E iBj〉, 〈E iBj,k〉, as
well as 〈BiBj〉 and 〈BiBj,k〉.

A general procedure for determining the full αij and ηijk tensors from a simulation is to calculate the
electromotive force after applying test fields of different directions and with different gradients (Schrinner
et al. 2005). In the following we adopt xy averages, so the resulting mean fields depend only on z and
t, and only Bx and By are non-trivial (Bz = 0 because of the solenoidality B). Therefore, only the four
components of αij and the four components of ηij3 with i, j = 1, 2 are non-trivial. Here, the numbers
1, 2, 3 refer to the cartesian x, y, z components.

In the present case of one-dimensional mean fields it is advantageous to rewrite Equation (1) in the
form

E i = αijBj − η̃ijJj , i, j = 1, 2, (2)

where J = ∇ × B is the mean current density, and

η̃il = ηijkǫjkl (3)

is the resistivity tensor operating only on the mean current density. In the special case of one-dimensional
averages there is no extra information contained in the symmetric part of the Bj,k tensor that is not
already contained in the components of J . In fact, the four components of ηij3 map uniquely to those of
η̃il via

(

η̃11 η̃12

η̃21 η̃22

)

=

(

η123 −η113

η223 −η213

)

. (4)

This fact was also used in Brandenburg & Sokoloff (2002). The diagonal components of η̃ij correspond
to turbulent resistivity, while its off-diagonal components can be responsible for driving dynamo action
[Ω × J and W × J effects; see, Rädler (1969) and Rogachevskii & Kleeorin (2003, 2004), Rädler &
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Stepanov (2005)]. Conversely, the diagonal components of the α tensor can be responsible for dynamo
action while the off-diagonal components are responsible for non-regenerative turbulent pumping effects
(Krause & Rädler 1980). It should be noted, however, that for linear shear flows Rüdiger & Kitchatinov
(2005) find that the signs of the relevant coefficients of η̃ij are such that dynamo action is not possible
for small magnetic Prandtl numbers.

In summary, in the present case of one-dimensional mean fields, B = B(z, t), there are altogether
4 + 4 unknowns. The idea is to calculate the electromotive force

E
(p,q) = u × b(p,q) (5)

for the excess magnetic fluctuations, b
(p,q), that are due to a given test field B

(p,q), where the labels p
and q characterize the test field (p gives its nonvanishing component and q = 1 or 2 stands for cosine
or sine-like test fields. The calculation of the electromotive force requires solving simultaneously a set of
equations of the form

∂b
(p,q)

∂t
= ∇ ×

[(

U × b
(p,q) + u × B

(p,q)
)]

+ η∇2
b
(p,q) + G (6)

for each test field B
(p,q). Here, G = ∇ × [u × b

(p,q) − u × b(p,q)] is a term nonlinear in the fluctuation.
This term would be ignored in the first order smoothing approximation, but it can be kept in a simulation
if desired. (In the present considerations it is neglected.)

The four test fields considered in the present problem of one-dimensional mean fields are

B
(1,1) =





cos k1z
0
0



 , B
(1,2) =





sin k1z
0
0



 , (7)

B
(2,1) =





0
cos k1z

0



 , B
(2,2) =





0
sin k1z

0



 . (8)

As an example, consider the x component of E(p,q) for p = 1 and both values of q,

E
(1,1)
1 = α11 cos k1z − η113 sin k1z, (9)

E
(1,2)
1 = α11 sin k1z + η113 cos k1z. (10)

For p = 2, and/or for i = 2, one obtains a similar pair of equations with the same arrangement of cosine
and sine functions. So, for each of the four combinations of i and j (= p) the set of two coefficient, αij

and ηij3, is obtained as
(

αij

ηij3

)

= M
−1

(

E
(j,1)
i

E
(j,2)
i

)

, (11)

where the matrix

M =

(

cos k1z − sin k1z
sin k1z cos k1z

)

(12)

is the same for each value of p and each of the two components i = 1, 2 of E
(p,q)
i . Finally, η̃ is calculated

using Equation (3). Note that detM = 1, so the inversion procedure is well behaved and even trivial.
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