if !d.name eq 'PS' then begin device,xsize=18,ysize=9,yoffset=3 !p.charthick=2.4 & !p.thick=2.4 & !x.thick=2.4 & !y.thick=2.4 end ; ; mv idl.ps ../fig/pdet.ps ; mv idl.ps ../fig/pdet_large.ps ; !p.charsize=1.4 !x.margin=[7.5,0.6] !y.margin=[3.2,0.4] !p.multi=0 !x.title='!8k!d!9x!n!6' !y.title='!6Ra' circ_sym,1.3,1 ; ii=complex(0.,1.) onethird=1./3. sq3=sqrt(3.) Rac=1707.761d0 kpc=3.117d0 ; a1=-1. a2=+.5+.5*ii*sqrt(3.) a3=+.5-.5*ii*sqrt(3.) ; ; compute the 3 values of q ; nRa=201 & nkp=301 ; RRa=grange(100.,3000.,nRa) & kkp=grange(.5,5.0,nkp) & levx=50 RRa=grange(1680.,1800.,nRa) & kkp=grange(2.5,3.8,nkp) & levx=1. ; det=fltarr(nkp,nRa) ; for iRa=0,nRa-1 do begin for ikp=0,nkp-1 do begin kp=kkp[ikp] Ra=RRa[iRa] ; kp4=kp^4 ; q0=kp*sqrt((Ra/kp4)^onethird-1.) q1=kp*sqrt(1.+a1*complex(Ra/kp4)^onethird) q2=kp*sqrt(1.+a2*complex(Ra/kp4)^onethird) q3=kp*sqrt(1.+a3*complex(Ra/kp4)^onethird) ; c1=(q1^2-kp^2)^2 c2=(q2^2-kp^2)^2 c3=(q3^2-kp^2)^2 ; ;m=[[ cosh(.5*q1), cosh(.5*q2), cosh(.5*q3)], $ ; [q1*sinh(.5*q1),q2*sinh(.5*q2),q3*sinh(.5*q3)], $ ; [c1*cosh(.5*q1),c2*cosh(.5*q2),c3*cosh(.5*q3)] ] ; ;det(ikp,iRa)=LA_determ(m) ;det=imaginary((sq3+ii)*q2*tanh(.5*q2))+q0*tan(.5*q0) det(ikp,iRa)=imaginary((sq3+ii)*q2*tanh(.5*q2))+q0*tan(.5*q0) endfor endfor ; lev0=[-1,0,1]*1e-6 lev=grange(-1,1,40)*levx print,minmax(det) ;lev=grange(min(abs((det))),max(abs((det))),20) contour,clip(det,minmax(lev)),kkp,RRa,lev=lev,/fil contour,det,kkp,RRa,lev=lev0,/over,col=255 oplot,[1,1]*kpc,[1,1]*Rac,col=55,ps=8 ;print,kp,Ra,abs(det) END