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Handout 4: Rayleigh–Bénard problem (Part II)

Most of the effort in comparing with laboratory measurements went into the treatment of suitable
boundary conditions. Let us consider here the no-slip condition, i.e.,

ux = uy = uz = 0 (1)

Owing to ∇ · u = 0, this implies uz,z = 0, in addition to uz = 0. Such a function can no longer be
represented by simple sine and cosine series. Let us discuss here consequences for the stability analysis.

1 Normal mode analysis

One usually speaks of normal mode analysis, when the eigenfunction is decomposed into a complete set of
functions. For the time being, we continue using a Fourier decomposition, but now only in the horizontal
direction, so we set u1z = û1z(z) eσt+ik⊥·x⊥ , Let us inset this into Eq. (15) from Handout 3, i.e.,
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where D = ∂/∂z has been introduced as a shorthand; this is not to be confused with the advective
derivative used earlier.

Another trick that can be invoked is what is called the principle of the exchange of stabilities, which
really just means that σ is real and that the marginal states are characterized by σ = 0. We discussed
this in Handout 3, but didn’t talk about exchange of stabilities. Chandrasekhar (1961) talks a lot about
it and gives in his Section 11 a general proof of this for Rayleigh-Bénard convection in the absence of
rotation. In the presence of rotation, however, the principle of the exchange of stabilities is not valid.

Thus, putting σ = 0 in Equation (3), and multiplying by −1 (so the coefficient in front of the highest
derivative is positive) we have
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Note that this equation, which describes only the onset of convection, is independent of Pr. We have seen
this before where the marginal stability condition for stress-free boundary conditions was independent of
Pr.

The general solution can now we written as a superposition of solutions of the form
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with, in general, complex values of qi. Inserting this into Equation (4) yields
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for i = 1, 2, and 3. To solve this equation, we need to find the three roots of this equation. The footnote1

1To find the three roots of (−1)1/3, it is useful to represent −1 in the form −1 = eiπ . The three solutions are then
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and
eiπ = −1. (9)

Likewise, if we wanted to find the roots of (−1)1/5, for example, they would be given by
e±iπ/5 = cos π/5 ± sin π/5, e±3iπ/5 = cos 3π/5 ± sin 3π/5, and, again, e5iπ/5 = −1.
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is a reminder of how you do this. With these preparations, we can now write
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for the three roots of q2
i . To find all six roots of qi, we begin with the simplest case, i.e.,
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Next, we have
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and finally, q±3 is just given by the complex conjugate of q±2, i.e.,

q±3 = q∗±2. (13)

To construct the final solution and to determine the critical excitation condition, we need to invoke
boundary conditions. In addition to those discussed in the preamble, i.e., û1z = Dû1z = 0, we still have
the condition T̂ = 0, which can be expressed in terms of û1z using Eq. (10) of Handout 3, which reduces
to
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For each of the three pairs, the functions can be readily combined into a function that is symmetric
around 0 by
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To obey the boundary condition û1z(±1/2) = 0, we have to require that
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cosh qi/2 = 0. (16)

This is one equation for the three unknowns Ai for i = 1, 2, and 3. Next, to obey the boundary condition
Dû1z(±1/2) = 0, we have to require that
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Finally, to obey the boundary condition (D2 − k2
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)2û1z(±1/2) = 0, we have to require that
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We now have 3 equations for the three unknowns Ai for i = 1, 2, and 3. This leads to a 3 × 3 matrix
equation, where the eigenvector is given by (A1, A2, A3) and the matrix is a function of Ra and k2

⊥
. The

determinant of this matrix must vanish, which then results in a function Ra = Ra(k2
⊥

); see Fig. 11.10 of
KCD. The smallest value of Ra is reached at k⊥ = 3.12 and gives Ra(k⊥) = 1708.
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