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Handout 5: Rayleigh–Bénard problem (Part III)

1 Weakly nonlinear analysis

You may have noticed that the eigenfunctions discussed above all correspond to rolls and not to hexagonal
cells, which is what is usually seen in laboratory experiments. Also, of course, the value of the Prandtl
number didn’t even enter in the stability analysis, except for linear growth rates. However, the growth rates
from the linear theory are only of limited usefulness beyond the onset of instability at Ra = Racrit. To go
beyond the linear stability analysis, one has to continue the analysis to higher orders, beyond T0, T1, and u1.
This procedure was first explored in a seminar paper by Schlüter et al. (1965), and it has subsequently been
used in many other fields, such as the theory of the nonlinear development of the laser instability, as well as
in biophysics, where pattern formation plays is an important problem. For these broader applications and
a pedagogic introduction to this topic, see the review and text book by Haken (1975, 1983).

For compacter notation, it is convenient to introduce the state vector q = (u, T, P/ρ0). The ansatz for
the nonlinear solution to the fully nonlinear equations assumed to be

q(x, t) = A1(t)q
(1)(x) + A2(t)q

(2)(x) + A3(t)q
(3)(x) + ... (1)

where the q
(i)(x) are the eigenvectors to the linear problem at Ra = Racrit. These eigenvectors form a

complete set, so all nonlinear solutions at Ra > Racrit can be expanded in terms of these eigenfunctions.
Consider now the nonlinear equations in the form

∂q

∂t
= Lq + N(q). (2)

It is convenient to write the q as ket-vectors, |q〉, and define adjoint eigenvectors, which are solutions of the
adjoint problem ∂〈q|/∂t = 〈q|L. These eigenvectors are normalized such that 〈q(i)|q(j)〉 = δij . Inserting
now Equation (1) into Equation (2) yields the following set of equations:

dξl

dt
= σlξl − All′l′′ξl′ξl′′ (3)

for all eigenvalues σl, where the index l characterizes the eigenstates for different wavenumbers (k⊥, kz).
Here, the All′l′′ are known coefficients. Since we are still in the weakly nonlinear regime, the higher modes
are not yet excited and so σl for l > 1 will be negative. Furthermore, since the time evolution is slow we
can neglect dξ2/dt compared with σ2ξ2 and solve Equation (3) for l = 2.

2 Form of L and eigenvectors ql

It is convenient to return to the original linearized equations in the form

∂u1

∂t
= − 1

ρ0
∇P1 + αT1gẑ + ν∇2

u1 (4)

∂T1

∂t
− βuz1 = κ∇2T1. (5)

∇ · u1 = 0 (6)

and write the matrix equation in the form ∂tSq = Lq with

S =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0











, L =











ν∇2 0 0 0 −∂x

0 ν∇2 0 0 −∂y

0 0 ν∇2 αg −∂z

0 0 β κ∇2 0
∂x ∂y ∂z 0 0











, q =











u1x

u1y

u1z

T1

P1/ρ0











(7)

1



It is possible to rewrite the matrix in hermitian form

S =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 Pr 0
0 0 0 0 0











, L =













∇2 0 0 0 −∂x

0 ∇2 0 0 −∂y

0 0 ∇2 Ra1/2 −∂z

0 0 Ra1/2 ∇2 0
∂x ∂y ∂z 0 0













, q =











u1x

u1y

u1z

T1

P1/ρ0











(8)

where the eigenvector has the form

ql =











q1 cos lπz
q2 cos lπz
q3 sin lπz
q4 sin lπz
q5 cos lπz











eik⊥·x⊥ (9)

where l = 1, 2, ..., are integers characterizing higher eigenmodes, and the eigenfrequency for the most
unstable mode was calculated in lecture 3 to be

σl = −1 + Pr

2Pr
+

√

(1 + Pr)2

4Pr2
− (k2

⊥
+ l2π2)2

Pr
+

Ra

Pr

k2
⊥

k2
⊥

+ l2π2
. (10)

The nonlinearity is given by

N(q) = −
3

∑

i=1

qi∇iSq. (11)

It turns out that
∂ξ1

∂t
=

3

2
π2 Pr

Pr + 1

Ra − Racrit

Ra
ξ1 +

2
√

2P

9π2(Pr + 1)
ξ1ξ2 (12)

and
∂ξ2

∂t
= −4π2 ξ2 −

2
√

2P

9π2(Pr + 1)
ξ2
1ξ1ξ2 (13)

By invoking the principle of the elimination of rapidly adjusting variables, we finally arrive at

∂ξ1

∂t
=

3

2
π2 Pr

Pr + 1

Ra − Racrit

Ra
ξ1 −

P

6π2Racrit(Pr + 1)2
ξ3
1 . (14)

Thus, the solution has a stable fixed point (negative prefactor) and the bifurcation is supercritical.
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