ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence September 11, 2016, Azel Brandenburg

Handout 6: Double-diffusive instability

broad range of applications sea water massive stars in which the burning of hydrogen into helium has
led to a stabilizing gradient of the mean molecular weight.

1 Governing equations

At the technical level, the double-diffusive instability is an extension of the Rayleigh-Bénard problem in
that the density is now a function of not only temperature, but also the concentration of salinity (in the
ocean) or helium (in deeper layers of a star). Thus, the equation of state for p includes now an extra
term for this concentration and reads

p = poo [1 = ar(T = To) + ac(C — Coo)] (1)

Thus, the momentum equation becomes

0
<8t - sz) Viu, = aTgViTl - achiCl, (2)

and for temperature and concentration we have respectively

0 0
<8t - KJTV2> T = Brua, (c’)t - HCV2> C1 = Bcou. (3)

Applying the operators of the left-hand sides of Equation (3) to Equation (2), we have

) ) ) ) )
(at - nTv2> <8t - nov2> <8t - yv2> Viu,, = K(% - HCV2) arfr — (at - HTW) aoﬂc] gV2u,.

(4)
etk T we have

Assuming solutions to be of the form u,; = @,;1(2)
(o4 krk?) (0 + kck®) (o + vk?) k* = [(0 + kck?) arBr — (0 + krk?) acBc] gki. (5)
If the principle of the exchange of stabilities were applicable, we would have

krkovk® = (kcarBr — kracfc) gk3 . (6)

Thus, the condition of marginal stability can be written in the form

k76 _ OéTﬁTg _ aCﬁC‘g (7)
k3 KV KoV

Thus, we see that the difference between two suitably defined Rayleigh numbers has to be big enough.
Moreover, we can envisage two quite different situations:

(i) Br islarge (larger than by the usual marginal stability criterion without salinity), but ¢ is also large
so that the system is being stabilized. In astrophysics, the resulting state is called semi-convection.

(ii) Ar is negative (or at least smaller than by the usual marginal stability criterion without salinity),
but B¢ is now also negative so that the system is being destabilized. In oceanographics, the resulting
state is called thermohaline convection and was discovered by Stern (1960).



2 Dispersion relation

Let us now work out the dispersion relation:

(04 K1k2) (0 + kck?) (04 k%) = [(0 4+ wek?) arfr — (o + wrk?) achic] g5 = 0. (3)
Thus,
k2
o+ o (kr + ke +V)E* + o |:</<«T"€C + kev + ver)k* + (acBe — arBr)g = 12
+rrkovk® + (acBokr — arBric)gkl =0
It may be more intuitive to define arfrg = —N% and acfBcg = —NE, so that

0%+ o (kr + ko + VK> 4o |:(’€T’€C + kov + vir)k* + (NF —

I ?V\Fm

o

Let us now introduce nondimensional units by defining o /vk? — o, kr/v — K, ko /V — Kk,

N2 /v2k* — N2, N& /v*k* — NZ, and k% /k? — k2

+rhrkovkS + (N2kg — NCKT)kJ_

o® +0*(kr + ko + 1) + 0 [(krke + ko + k1) + (N7 — NEG)KT |
+RTKRC + (N%FLC — NgKT)ki =0.

This equation is now dimensionless, but we still have five parameters to vary! In Figure 1 the dispersion
relation is plotted for the case of an oscillatory onset of convection (so-called semiconvection) for N2 =

—1.5 (unstable) and N2 = —1 (stabilizing), using k2 /k* = 0.5.
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Figure 1: Real and imaginary parts of o for N2 = —1.5, N3 = —1, for k2 /k* = 0.5. Note that Res > 0
(unstable) for ko /kr < 0.1. At the same time, Imo # 0 (oscillatory).
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