ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence September 29, 2016, Axel Brandenburg

Handout 8: Inflection point instability II

e Experimental studies by Reynolds (1883). Two hypotheses: viscosity acts either as to stabilize or
to destabilize. No physical mechanism suggested. Unaware of earlier inviscid studies.

e Helmholtz (1868), Kelvin (1871), and Rayleigh (1880) considered the stability of inviscid incom-
pressible flow of constant density.

e Orr (1907) and Sommerfeld (1908) considered the stability of viscous flows and confirmed that
Reynolds’ first hypothesis is valid.

e Fjortoft (1950) finds a stricter necessary condition for instability. [He was part of a Princeton team
that in 1950 performed the first successful numerical weather prediction using the ENIAC electronic
computer.]

1 Fjortoft’s theorem

Consider again Rayleigh’s equation in integral form
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and write ¢ = ¢; + i¢;. Expand the second term with (U — ¢)* = (U — ¢;) — i¢;. Instead of considering
just the imaginary part of this equation,
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which shows that U” must change sign at least once in the interval, he considered the real part,
U'(U — ¢,
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Given that
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we also have o
(v = Us) / WWF dz =0 (for instability), (5)

where Us = U(z = ), and z; is the inflection point where U” is zero, i.e., U'(x = z5) = 0. Adding
Equation (5) to Equation (3) yields
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This shows that, for instability, not only has U"” to vanish at least once within the domain, but the product
U"(U — Uy) must be negative; see Figure 1 for two examples of which only one obeys U"” (U — Uy) < 0.

2 Adjoint problem

Rayleigh’s instability equation,

(U =) (93 = k)¢ = U" =0, (7)
is not self-adjoint. The adjoint problem is given by
(2= k) (U = )" = Ut = 0. (8)
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Figure 1: Sketch of two shear flow profiles. Both are Rayleigh unstable, but only one is Fjgrtoft’s unstable.

Differentiating through, we obtain first

OU' DT+ 0,(U — o)(4) — K*(U — e)ypt — U1 = 0. (9)
and then . R R . . .
Ul + U' @1 + U' (@1 + (U = o)1) = k(U = o) = U"pT =0, (10)
or
+2U" (1) + (U = o) (1) — kXU — )bt = 0. (11)
Multiplying this by U — ¢ yields
+2AU = QU (@) + (U = * (1) = KU — )" =0, (12)
but since 2(U — )U" (1) + (U — ¢)2(41)" = 8, [(U — ¢)*(¥")'], Equation (12) can also be written as
9, [(U — )20, — k*(U — ¢)*¢t =0 (13)

which is manifestly self-adjoint!
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