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INTRODUCTION,

§ 1. THE object of the present paper can be best explained by referring to a sentence
which occurs in a paper by Professor G. H. Darwin.*  This is as follows :—

“The principal question involved in the nebular hypothesis seems to be the
stability of a rotating mass of gas; but, unfortunately, this has remained up to now
an untouched field of mathematical research. We can only judge of probable results
from the investigations which have been made concerning the stability of a rotating
mass of liquid.”

In so far as the two cases are parallel, the argument by analogy will, of course, be
valid enough, but the compressibility of a gas makes possible in the gaseous nebula a
whole series of vibrations which have no counterpart in a liquid, and no inference as
to the stability of these motions can be drawn from an examination of the behaviour
of aliquid. Thus, although there will be unstable vibrations in a rotating mass of
gas similar to those which are known to exist in a rotating liquid, it does not at all
follow that a rotating gas will become unstable, in the first place, through vibrations
which have a counterpart in a rotating liquid : it is at any vate conceivable that the
vibrations through which the gas first becomes unstable are vibrations in which the
compressibility of the gas plays so prominent a part, that no vibration of the kind
can occur in a liquid. If this is so, the conditions of the formation of planetary
systems will be widely different in the two cases.

With a view to answering the questions suggested by this argument, the present
paper attempts to examine in a direct manner the stability of a mass of gravitating
gas, and 1t will be found that, on the whole, the results are not such as could have
been predicted by analogy from the results in the case of a gravitating liquid. The

* «On the Mechanical Conditions of a Swarm of Meteorites, and on Theories of Cosmogony,” ¢ Phil.
Trans.,” A, vol. 180, p. 1 (1888).
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2 MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA.

main point of difference between the two cases can be seen, almost without
mathematical analysis, as follows :—

§ 2. Speaking somewhat loosely, the stability or instability may be measured by
the resultant of several factors. In the case of an incompressible liquid we may say
that gravitation tends to stability, and rotation to instability ; the liquid becomes
unstable as soon as the second factor preponderates over the first. The gravitational
tendency to stability arises in this case from the surface inequalities caused by the
displacement : matter is moved from a place of higher potential to a place of lower
potential, and in this way the gravitational potential energy is increased. As soon
as we pass to the consideration of a compressible gas the case is entirely different.

Suppose, to take the simplest case, that we are dealing with a single shell of
gravitating gas, bounded by spheres of radii  and » + dr, and initially in equilibrium
under its own gravitation, at a uniform density p,.

Suppose, now, that this gas is caused to undergo a tangential compression or
dilatation, such that the density is changed from

po to py + Zp.S,,

where p, is a small quantity, and S, is a spherical surface harmonic of order i.
It will readily be verified that there is a decrease in the gravitational energy of
amount

dm (@ P [[8,25in 0 a0 dg.

As this is essentially a positive quantity, we see that any tangential displacement
of a single shell will decrease the gravitational energy.

This example is sufficient to show that when the gas is compressible, the tendency
of gravitation may be towards instability. The gravitation of the surface inequalities
will as before tend towards stability, but when we are dealing with a gaseous nebula,
it is impossible to suppose that a discontinuity of density can occur such as would be
necessary if this tendency were to come into operation. Rotation as before will tend
to instability, and the factor which makes for stability will be the elasticity of
the gas. ‘

We can now see that there is nothing inherently impossible, or even improbable,
in the supposition that for a gaseous nebula the symmetrical configuration may
become unstable even in the absence of rotation. The question which we shall
primarily attempt to answer is, whether or not this is, in point of fact, a possible
occurrence, and if so, under what circumstances it will take place. To investigate
this problem, it will be sufficient to consider the vibrations of a non-rotating nebula
about a configuration of spherical symmetry.

§ 8. Unfortunately, the stability of a gaseéous nebula of finite size is not a subject
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which lends itself well to mathematical treatment. The principal difficulty lies in
finding a system which shall satisty the ordinarily assumed gas equations, and shall
at the same time give an adequate representation of the primitive nebula of
astronomy.

If we begin by supposing a nebula to consist of a gas which satisfies at every
point the ordinarily assumed gas equations, and to be free from the influence of all
external forces, then the only configuration of equilibrium is one which extends to an
infinite distance, and is such that the nebula contains an infinite mass of gas. The
only alternative is to suppose the gas to be totally devoid of thermal conductivity,
and in this case there is an equilibrium configuration which is of finite size and
involves only a finite mass of gas. But the assumption that a gas may be treated as
non-conducting finds no justification in nature. When we are dealing, as in the
present case, with changes extending through the course of thousands of years, we
cannot suppose the gas to be such a bad conductor of heat, that any configuration,
other than one of thermal equilibrium, may be regarded as permanent.

Professor DARWIN has pointed out that a nebula which consists of a swarm of
meteorites may, under certain limitations, be treated as a gas of which the meteorites
are the “molecules.”® In this quasi-gas the mean time of describing a free path must
be measured in days, rather than (as in the case of an actual gas) in units of
107% second. The process of equalisation of temperature will therefore be much
slower than in the case of an actual gas, and it is possible that the conduction of heat
may be so slow that it would be legitimate to regard adiabatic equilibrium as
permanent. ¥

Except for this the mathematical conditions are identical, whether we assume the
gaseous or meteoritic hypothesis. The present paper deals primarily with a nebula in
which the equilibrium is conductive, but it will be found possible from the results
arrived at, to obtain some insight into the behaviour of a nebula in which the
equilibrium is partially or wholly convective.

§ 4. Whether we suppose the thermal equilibrium of the gas to be conductive or
adiabatic, we are still met by the difficulty that the gas equations break down over
the outermost part of the nebula, through the density not being sufficiently great to
warrant the statistical methods of the kinetic theory. This difficulty could be avoided
by supposing that the nebula is of finite size, and that equilibrium is maintained by
a constant pressure applied to the outer surface of the nebula. If this pressure is so
great that the density of gas at the outer surface of the nebula is sufficiently large to
justify us in supposing that the gas equations are satisfied everywhere inside this
surface, then the difficulty in question will have been removed. On the other hand,
this pressure can only be produced in nature by the impact of matter, this matter

* @& H. DARWIN, loc. cit., ante.
t Ibid., p. 84.
r 2
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consisting either of molecules or meteorites, so that we are now called upon to take
account of the gravitational forces exerted upon the nebula by this matter. This
whole question is, however, deferred until a later stage; for the present we turn to
the purely mathematical problem of finding the vibrations of a mass of gas which is in
equilibrium in a spherical configuration. We shall consider two distinct cases. In the
first, equilibrium is maintained by a constant pressure applied to the outer surface of
the nebula, this surface being of radius R,. In the second, the nebula extends to infinity,
and 1t 1s assumed that the ordinary gas equations are satisfied without limitation. We
suppose for the present that the gas is in thermal equilibrium throughout. It is not,
however, supposed that the gas is all at the same temperature ; to make the question
more general, and to give a closer resemblance to the state of things which may be
supposed to exist in nature, it will be supposed that the gas is collected round a solid
spherical core of radius R, and the temperature will be supposed to fall off as we
recede from this core to the surface, the equation of conduction of heat being satisfied
at every point. We shall also suppose that the gas is acted upon by an external
system of forces, this system being, like the nebula, spherically symmetrical. The
reason for these generalisations will be seen later; it will at any time be possible to
pass to less general cases.

Tur CRITERION OF STABILITY,

The Principal Vibrations of a Spherical Nebula.

§ 5. We shall take the point about which the nebula is symmetrical as origin. It
will be convenient to use rectangular co-ordinates «, ¥, #, in conjunction with polar
co-ordinates », 0, ¢. We shall imagine the nebula to undergo a small continuous
displacement ; let the components of this be & %, {, when referred to rectangular
co-ordinates, and u, rv, 7w sin  when referred to polars. Thus the point initially at

x,y,z or r,0,¢

1s found after displacement at
e+ & y+m 2+ or rdu 040, ¢+ w.

The cubical dilatation of this displacement will be denoted by A, so that

of  on | Of

A= % + oy + 0z
1 0 5 71» 6 Vo @1_11
=7 o (ru) + sin 0 00 (v sin 0) + o’
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I general we shall denote the density by p, pressure by =, temperature by T,
total potential by 'V, coefficient of conduction of heat by k, and the gas constant by M,
the last of these being given by the equation

ws=Np . . . . . . . . . ()
In the equilibrium configuration each of the quantities just defined is a function of

7 only.
If ¢ is any one of these quantities, we shall denote the

Value of ¢ in the equilibrium configuration, evaluated at x, y, z, by ¢,
. ’
' . displaced " " 0 s CotC.

3 2 ” . ) ’ a’tm+€>y+7792+zby CO+01‘

The quantities ¢,, ¢/, ¢, are, of course, not independent. Since ¢ ¢, 1s the same
0 » V1 > Y 0 1
function of @ + & v+, 2+ {, as is ¢, + ¢’ of x, y, z, we bave, as far as the first
order of small quantities
)

o,

e, 0c,
0 __l__ C )
0z’

(’0+01:00+Cl+f’a£+"70y

or, since ¢, is a function of » only,

§ 6. From the equation of continuityl we have at once
pL=—pyA. . . . o ..o (3)
Since A remains the same throughout the motion of any given element of the gas,
N=000 0 0 L (4)

Hence, from equation (1),

@)+ @ = N (T + T4) (py + 1),
giving as the value of =,
= Ao (Thpy + Topy) = Nopy (T — ATg) .o, (5).

So long as we confine our attention to a single element of the gas, the coefficient ot
conduction of heat is proportional to the square root of the temperature, and is
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independent of the density.® We therefore have, as far as the first order of small
quantities,
K T :
x0—2TO"""""'(6)'
Lastly V', regarded as the difference between V, 4+ V' and V,, is seen to be the
potential of a volume-distribution of matter of density p’, to which must be added :
(i.) The potential of a surface-distribution over the sphere r = R,, the surface

density being ru Yl
— LU\Py = Op) lr =Ry

where o, is the mean density of the core, and
(1.) The potential of a surface-distribution over the sphere » = R, the surface
density being

[u(py = o) =,

where o, is the density of the medium (if any) outside the nebula.

§7. We are now in a position to handle the equations of motion, and of conduction
of heat. For the element which, in the undisturbed state, is at «, ¥, 2z, the equations
of motion are three of the type

o3 0 Ry

Transforming to polar co-ordinates, these equations are equivalent to

agu / 1 a . ’
_atj——a(v_‘—v) VJ_p)aT( 'ﬁ)‘), . . . . . (8)
aw 10V 1 s’
"em = o0 “ppoec o - (O
7 sin 0 ew 1 QY, LA. 0w’ ..o

O " rsin@ 0p  pyrsin 6 O
As an equation of equilibrium, we have

E?VO 1 am'o

G L= ),

and with the help of this, equation (8) reduces to

Fu_ oV 13 o o,
= T a t A . (2),

as far as the first order of small quantities.

* BoLTZMANN, ¢ Vorlesungen iiber Gastheorie,’ vol. 1, § 13,
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Let us write

X — -V'/ — m_//p0 . . . . . . . . . (18),
so that
dy oV’ 1 o' | o dp,

or o py or ' p2or’

then equation (12) becomes

Pu__dy 1/, 0% / QEO>
oL~ or + °<p o ® (}7:, ’

and, by the use of equation (2), this is seen to be equivalent to

Fu__ Oy 1/ Om 9P
=t )

Equations (9) and (10) now take the simple forms,

v _ 1oy Fw_ 1 Oy
o 1?00 o T 12sin® 0 O

From these last two equations, we obtain at once

@ (1 0 ow) _ 1 9 /. . 0x 1 oy
or {s.in 6 00 (vsin 6) + 2 } 7% sin 6 00 <\°m 0 ;’39> + P sin® 6 0g*

or, what is the same thing,

i 13,03l — ve 10 [ 50x
éﬁ{A._M,(r u)}_-VX 7ar<r X)L ()

§ 8. The equation of conduction of heat is, as far as the first order of small
quantities,

By | 3T, 13/ ar o1 or |
—M G0 = {5 ax>+ay< aJ>+az< o)} - (0

in which p, «, T stand for p, + p/, k, + «/, 7y + 7 respectively. The notation is that
of KircHHOFF ; the equation may either be written down from first principles, or
regarded as a simplified form of KIRcHHOFF'S general equation.™

Since there is thermal equilibrium in the undisturbed configuration,

0 oT 0 oT 0 oT,\
“a’(’{o gi’) + @(KO ay()) + aO; (KO aéo> = O. . . - . . (17).

* KIRCHHOFF, ‘ Vorlesungen tiber die Theorie der Warme, p. 118.
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Hence equation (16) reduces to the form
ap1 _1fa ar 3/ o o/ a'_l.">
;T O” ac Lax< %o aJ,> +a <"0 ay> T (“0 o
o [ 0T, 5 ( , 0T, , 0T,
+8v( af>+81/ @)4 a”< 6’>} . (18).
Since k), Ty are functions of  only, the bracket on the right-hand side of this last

equation again reduces to

aKO%rJr VZT'+%”‘ %ZG+K’VZTO. Coe e (19),

and, cleared of accented symbols by the use of equation (2), this takes the form

E;;C() 81 + K, VvT

()/c1 8 Ty

e il VAT,

J axoal 5 a';‘r) a"() 2
—uly <a; A ’) KV (3>+ a,T,VTo}

T, T ol
) gib{alc‘ aa} + %];”} — Ky -Oar” Vi, ..o (20).

Now equation (17) can be written in the form

%”"8T0+KUVT_0 (21,

whence, by differentiation with respect to 7,

'() ’}/C 8P, a oryt aK m
or <870 8;(> + Ko or VT, + 'a,,ﬂ Vi, =0. . . . . . (22).

With the help of equation (22), the bracket in the second line of (20) reduces to

¢ Arry
2iey 0T

2 or

while, with the help of (21), that in the third line becomes

Again, if we substitute for «; the value found for it in equation (6), the two last
terms in the first line of (20) can be transformed as follows :

a/c] 81‘ 0 ( T 5 UT() a/co al

L + K]V TO — Ky a c)T y or + ‘)rl‘ {

and the last bracket vanishes by equation (21).

'+K0VT}

(/)
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Collecting results, and substituting for p, from equation (3), we find that equation
(18) takes the form

: T, \ OT,
o TVt rg, <zT> o

oTy /20 4 ou
— Ky a7<1———7- —+V’U/)} .o (28)F

o1, O, OT
Mpoat"'cvaz' { :

(7]

§ 9. In addition to the volume-equations which have just been found, there are
certain boundary conditions which must be satisfied. These are as follows :
(i.) The pressure must remain constant at the outer surface, so that we must
have
@ |yep, = 0.

(i.) The temperature must remain unaltered at » = R, or else the flow of
temperature across the surface » = Ry must remain ni/. These two suppositions
require respectively -

[T, ]or = 0, or {‘%} =0

(i) A similar temperature condition must be satisfied at » = R,

(iv.) The kinematical and dynamical boundary conditions at the surface » = R,
must be satisfied. These express that the normal velocities shall be continuous at
this surface, and that the motion of the rigid core shall be such as would be caused
by the forces acting upon it from the gas.

§ 10. Equations (14), (15) and (23) give the rates of change in u, A and T, in terms
of these quantities. Hence these equations enable us theoretically to trace the
changes in w, A and T, starting from any arbitrary values of u, A, T}, du/d¢ and
dA/dt, which are such as to satisfy the boundary conditions.

Imagine initial values of w, A, T, du/dt and dA/dt, in which the latitude and
longitude enter only through the factor S,, where 8, is any spherical harmonic of
order n. Then it can be shown that the solution through all time (so long as the
squares of the displacement may be neglected) is such that the latitude and longitude
enter only through the factor S,. For, assuming a solution of this form, the value of
V' found in § 6 will contain S, as a factor, as will also p,, =, @ (equations 3, 5, 2)
and x (equation 13). The same is true of V3, V2T, and Vu, since

V2[f()8,] = {__l; f_l ( PRUAC )> _ o+ 10 )} .

7 dp dr 72

* Sections 5-8 were re-written in November, 1901. T take this opportunity of expressing my thanks
to the referec for the care and trouble which he has bestowed upon my paper. To him I am indebted for
several improvements in these four sections, in particular for the present form of equation (23), and also
for the removal of a serious inaccuracy from my original equations.

VOL., CXCILX.,-~A. ¢
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where f(r) is any function of 7. It therefore appears that every term in equations (14),
(15)and (23) will contain S, as a factor. Dividing out by this factor, we are left with
equations which do not involve § and ¢, and this verifies our statement.

§ 11. Tt therefore follows that there are principal vibrations® in which u, A and T,
are of the form

w=AS.e¥ . . . . . . (24),
A=BSer . . . . . . . . . . (25),
T, = CSer . . . . . . . . . . (26),

in which A, B, C are functions of 7 only. The relations between A, B, C and p must
be found from the equations (14), (15), (23), and the boundary conditions.
The value of p’ for the vibration just specified is

— E@‘) —_ / (JBQ — QBQ B 3 ot
p=p—uy = - QAPO +u )= A+ Bpu) S.e?.

We shall in future drop all zero suflixes, there being no longer any danger of
confusion. Caleulating V" after the manner explained in § 6, we find (¢f. THOMSON
and Tarr, ‘Nat. Phil.,” § 542), R .

V' = VS,er,
where

N S Y TR

R,

Am [ (p e dr A —a)] |
(27L -+ 1) {_ "’7‘ <A dr Bp> 1 + Ij gl :];':le . . . (27).

We have further, by equations (2) and (5),

b _ dws PN il o do Jinl
S Ap (C BT)S,e A o D,

and hence we obtain (equation 13)
X = FS,e?,

where
A do

F=V—\C~DBT)+ o dr (28).
Substituting the assumed solutious for u, A and I}, and the corresponding values
for x, p1, @), in equations (14), (15) and (23), and dividing throughout by the factor

S, we find the relations

* Tn order to avoid circumlocution, we shall find it convenient to use the terms “ principal co-ordinate ”
and “ principal vibration,” although we are ignorant as to whether the nebula is stable or unstable. It
will ultimately he found that we only apply our results to nebule which are either stable or in the limiting
state of neutral equilibrium.
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pA = _ B Adp

dr npwdvr—‘p dr (C—BF> oo (29)’

L d gany) o #(nt 1) |
—_pf’“(B——o;z—%(rA))_-- oL o),

. de dC k (d / ,dC d /C\dT
ipp(MpB+C0) = 557+ {3 () =m0 € ()

I LIS E Y QN

de v dr\ dr ) 7 dr 2
The boundary-equations found in § 9 reduce to the following :—

() [C=BTlon =0 . o o o e (82),

(i) G =0 or [-Z-C«] S0 L 3,
r=R,

dr
(i) Equations similar to (33)at»=R, . . . . . . . . . . . . (34),

(iv) (A),=p, = 0, when n is different from unity, or a more complex equation in the
caseof n=1. . . . . . . . . . . . . . . . . . . (35

§ 12. From the manner in which the analysis has been conducted, it will be clear
that every principal vibration must either be one of the class just investigated, or
else a vibration such that u, A, and T vanish everywhere.

For the latter class of vibration there are no forces of restitution. Thus the
frequency of vibration is zero, and the motion consists of the flow of the gas in closed
circuits, this flow being entirely tangential, and the gas behaving like an incom-
pressible fluid. Obviously these steady currents are of no importance in connection
with the question of stability or instability.

Discussion of the Frequency Equation.

§ 13. Returning to the class of vibrations in which u, A, and T do not all vanish,
we have seen that the frequency equation is found by the elimination of F, A, B, and
C from equations (28) to (35). Now p only enters into three of these equations ;
namely (31), in which it enters through the factor ¢p, and (29) and (30), in which it
enters through the factor — p® or (1p)>. Regarding ip, A, B, C, and F as unknowns,
it will be seen that the coeflicients which occur in equations (28) to (85) are all real.
The four volume equations enable us to determine A, B, C, and F except for certain

c 2
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constants of integration, and the values of these quantities will be wholly real if #p is
real. The boundary-equations enable us to determine the constants of integration
and also provide an equation for ¢p. Iivery term in these equations will be real if ip
is real. Hence the frequency equation can be written in the form

f(@p) =0,

where f(x) is a function of @ in which all the coefficients are real, these coefficients
being funetions of n and of the quantities which determine the equilibrium configura-
tion of the nebula.

It follows that the complex roots of ip will occur in pairs of the form

wp =y + 10,

where y and § are hoth real. There may also be roots for which #p is purely real, so
that & = 0, and y exists alone.

The vibration corresponding to any root is stable or unstable according as y is
negative or positive. '

If the equilibrium configuration of the nebula changes in any continuous manner,
so as always to remain an equilibrium configuration, the values of 4p will also change
in a continuous manner, and for physical reasons these values can never become
infinite. Hence, if the configuration of the nebula changes from one of stability to
one of instability, it must do so by passing through a configuration in which there is
a vibration for which y = 0.

§ 14. For the present we shall not discuss the actual stability or instability of any
configuration, but shall examine under what circumstances a transition from stability
to instability can occur.

We therefore proceed to search for configurations in which there are vibrations
such that y = 0. Now for such a vibration we have either a root of the frequency
equation p = 0, or else a pair of roots of the form ¢p = 4 78.

In the latter case the corresponding vibration is one in which a dissipation of energy
does not occur. A necessary condition for such a vibration is that no conduction of
heat shall take place. Hence both sides of the equation of conduction of heat
(equation 31) must vanish. Excluding adiabatic motion (represented by the
vanishing of the factor MpB + C,C), this condition compels us to take

p=20
together with

ded0 |k [ (,d0) Qo oy
{dr <q dr, —n(n+1) (/J T« dr <2T dr

di {1 d [, dAN 4 dA
TR Gl Rl
dr { 27 dy dr )

2

dr dv 7

- . (36).

7 dy
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. e)

Thus vibrations for which y = 0, if they exist, must satisfy equations (32) to (36),
and also equations (29) and (30), in which p is put equal to zero, and equation (28).

The case of n = 0 will be considered later (§ 28). Excluding this for the present,
we find that putting p = 0 in (30) leads to

F=0 . . . . . . . .. . . (37
Equation (29) now reduces to

dos fip _ —
Bor g, (C=Bh)=0." o (38),

or, replacing = by its value NTp,

d dp
Bpo (WD) +X"C=0 . . . . . . . (39),
Fquation (28) becomes
MO —BT) =" _ ,
V=)C-BT) - o= 0 . . . .. (40),

and the climination of ¢ — BT from this equation and (38) leads to the equation

oy (g% 1dw
(Zo"m_(\A[l7~+BP>Pd,/q Coe e (4D,

Substituting for V from equation (27), this becomes

4 ! (Zp ° R i+
Gu a1 (& 8+ Bp) i 4 [A(p — o) g

Bl)
dmr [/ dp A _[Ap=o)
+ (27l + ]) {[/ <A d,}, + BP> 71”‘-1 - [ ,ru--l 1‘:R]}
) 1 dw [dp
~<AW+BP> CalE )

§ 15. With a view to transforming this equation, let us consider the equation

477. 7 N 47,”«71 Ry J
(é;‘-}—: ])_;7;;1 { j‘R(, Jret dy -+ KO} (2;;1"13 { L ;“)'l‘_:{ dr -+ Kl} =L (43)

in which J and L ave any functions of 7, and K, K, are constants. If we multiply
by »**!, and differentiate with respect to », we obtain, after some simplification,

2 L Iy d ]
Ay {j‘/ ;;i ai + Kl } == (77‘1 (Iﬂ" ) . [ . . . (44),

while by multiplying (43) by = and differentiating, we obtain in a similar way

b !
— F{Eé {!'ROJTH+2 d?' + Ko}z .f[?_ (Lf)a—ﬂ) . . . . . . (45).
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Divide (44) by #* and differentiate with respect to », then

4rd d 1 d
7.27: d?‘

- =i ﬁ(L7~,z+1)} Coe e (48),

or, writing & for Lr, and simplifying

3 n(n+1)g—

e 2 — 4:7T7'J Vv e e e e (47),

and this same equation could have been deduced from (45) instead of (44).

Equation (47) is more general than (43) since the two constants K, K, have
disappeared. In fact equation (47), being a differential equation of the second order,
will contain two arbitrary constants in its solution, and these correspond to the two
missing constants K, and K, We can, however, determine K, K, in terms of
these two arbitrary constants, and if these constants are chosen so as to give the
right values for K, K, the solution of (47) will be equivalent to the origmal
equation (43).

To determine K,, K,, put » = R, in (44) and we obtain

4:7TK1 l'(;)z ('l—/': (f/)ﬂl)] i N . . o ° . B ‘ ( 4 g )’
and similarly from (45)

4”K0 — [ 2+ 2 f (Eq.“ (-4 Ll))] o, (49).
2] _Pl)

Hence we see that equation (43) is exactly equivalent to the three equations
(47), (48), and (49).

§ 16. Comparing (42) with (43), it appears that (42) is exactly equivalent to the
tollowing i

dp v ode [dp
€= ( +B)pd7/dfr (50)

2 7 Z \
-t e (AR L (),
. e \ " /

dr®
A(p—oy) ‘
["_ <‘.7?7;-._Af01"]7 ' ‘ ‘ ' (52)'

=Ry

47K15[ -~ (fr")]

=R;

4K, = — [w" L (e 1>)] = [A (p — o) ww] L. (53).

=R, =Ry

The right-hand member of (51) is equal to
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so that if we introduce a new quantity u, defined by

— o2 lp [dw
u = 2mpr af @ (54),

equation (51) may be written in the form

P2
)-2-2—5%:{72(7&—{-1)-—2@4}5. R 6 1))

The solution of this will be of the form

E=Ed, () +Eo(*) . . . . . . . . (56),

in which E,, E, are constants of integration. We have, from the definition of ¢,

Ai’i-l-in“"@ ARG () + By () . L L (57),

dr = 0 T 2
and the elimination of B from this equation and (39) gives
dp d \ dp %
Ao C= - (ﬂ){A 2~ o LB (1) + Eadhy (7')}} <. (98),

If we imagine this value for C substituted in equation (36), we shall have a
differential equation of the second order for A. The solution of this will be of the
form

A=EA@)+EAC)+EAE) +EAC) o (39),

in which E, and B, are the new constants of integration. From this value of A we
can doduce the values of B and C (equations (57) and (58)) without introducing any
further constants of integration.

Turning to the boundary conditions, we now find that there are six boundary-
equations to be satistied (equations (32), (38), (34), (35), (52), (53)) and only three
arbitrary constants at our disposal, namely, the ratios of the four E's. If' we
eliminate these E's we shall be left with three equations to determine the contigura-
tion of the nebula at which instability sets in, and these equations will in general be
inconsistent.

§ 17. In order to put the right interpretation upon this result, it will be necessary
to return to the general equations of free vibrations found in § 12.

If we eliminate F from equations (29) and (30), we obtain
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Voo — Loanl = 2P o o :
p*{A + )o(n + 1) dr (°B) — dr g A>} p dr C+ dr (L)B. . (60),

while equation (30) may, with the help of (28), be written in the form
V=¢&r . . . . . . . . . . . (61),

in which £ is now defined by

Q

E - A dw o 2 v
PEMC—BY) - T T 1){; (r A)} S (62).

Substituting for V from equation (27), and treating the equation so formed in the
manner explained in § 15, we find, as the equivalent of equation (61),

(1) A volume equation, analogous in form to (51), namely,

PE - n(n+ J) dp .
T T — 4 7"< g T B (63),
(it) Two boundary equations analogous in form to (52) and (53). . . (64), (65).

Thus the equations found in § 11 may be 1'eplaced by
(#) Three volume equations, namely, equations (60), (63), and (31).
(B) Six boundary equations, namely, equations (32), (83), (34), (35), (64), (65).

We may conduct the elimination of B and C from the three equations («) in a
symbolic manner as follows :—

Let D, be a symbol which is used to denote any linear differential operator of
order 7, the differentiations being with respect to ». The symbol has reference
solely to the order of the highest differential coefficient which oceurs, and must in no
case have reference to any particular differential operator. Thus we write D,
indiscriminately for every operator of the form

. 4 am . ’)»r“l
Ju(r) g T Juer (7) 'a(;;;:?:i‘ +

The laws governing the manipulation of this symhol are as follows :

i) =D =D,
(it ) Db+ D.p =D, (11 > ),
(i) D, (D,p) =D, ..
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It must be particularly noticed that in general
Dnd’ - DﬂL(é = Dnd*

Corresponding, however, to any two specified operators of order n, say (D,), and
(D.,),, it will always be possible to find two functions of », say @ and b, such that

aD)yb—bD)yd=Dod . . . . . . . (86).

In terms of this operator, the three equations () (p. 16) may be written in the
following forms :

P(DA+DB +DB+DC=0 . . . . . . . (67
DA 4+ DB+ D0+ p*(DA +DB)=0. . . . . (68),
ip(DB+DC)+DC+DA=0 . . . . . . . (69).

Now D, is commutative with regard to functions of r, and is of course commutative
with regard to p. This enables us to eliminate B and C from the above equations,
To make this clearer, consider a simple case, say the pair of equations

DA=DB. . . . . . . . . . . (70).
DA=pD,B. . . . . . . . . . (7).
If we operate on (71) with d/dr, we get an equation of the form
D,A = p°D,,B,

and from this and equation (70), we can, with the help ot the property expressed in
equation (66), deduce an equation of the form

D,A =D,B + »*D,.,,B.
From this and equation (71) we can in & similar way obtain an equation of the form
DA =D,B + p°D,.,,B.

We may regard this as an equation giving A, and substitute for A in (71). In this

way we obtain
D, B+pD, B=0 . . . . . . . . (72,

and the elimination of A has been effected.

It will be clear that throughout this elimination we have followed a method which
would have been successful in eliminating A if d/dr had been regarded as a mere
multiplier. The result of the elimination is accordingly exactly the same as might
have been obtained directly from the original equations (70) and (71), by regarding
the D’s as multipliers and eliminating according to the ordinary laws of algebra,

VOL. CXCIX.—A. D
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It will now be apparent that we can eliminate any two of the three unknowns, A,
B, and C, from equations (67)-(69) by this method. The differential equation satisfied
by the remaining unknown (say A) will be

AA=0 . . . . .78,
where, symbolically,
P*Dy, p*Dy + Dy, Dy l
’ D, D, ipDy -+ D,

We may expand this determinant according to the rules already laid down for the
manipulation of the D’s, and so obtain

A = p°D,+ p'Dy + p*D, + Dy + pDy+ D, . . . . (75).

§ 18. We can now see the explanation of the difficulty which occurred in § 16.
The occurrence of the term D; in A points to a differential equation of the sixth
order, which is satisfied by any one of the quantities A, B, or C in the general case,
in which p does not vanish. As soon, however, as p is put equal to zero, the
expression for A reduces to Dy, and the differential equation is one of the fourth order
only. Tt therefore appears that by putting p = 0 before solving the differential
equations, the order of these equations is reduced automatically, and two solutions
are entirely lost from sight.

These two last solutions, it is easy to see, are solutions which do not approximate
to a definite limit, when p approximates to zero. The remaining four solutions will
approximate to the same forms as would be obtained by putting p == 0 before solving
the differential equations. Thus, instead of equation (59), we must write the complete
limiting solution for A in the form

LiA =By f (r) + By /3, (r) + By f5 () + By fu () 4 B f5 (s p) + Bo /i (r, p)* . (76).

p=0

* T have not found it possible to investigate the form of these two last solutions in the general case, but
it is easy to examine the nature of the solutions at infinity, when the nebula extends to infinity, and this
enables us to form some idea as to the general nature of the solutions. Suppose that at infinity we have

thl e . = (LQTWS
r=w Ap dr dr )
in which @ is real, then it can be shown that A = ¢ (v, p) A/, &c., in which A, B, €, are functions of
7 only, and

& (r, p) = Es cos (2 Jan (n + 1)775/2/isp) + Eg sin (2 Nan (n + 1) 77912/ isp)

when the negative sign is taken in the above ambiguity, the circular functions being replaced by hyperbolic
functions when the positive sign is taken. The value of i is wholly real when squares of 7 may be
neglected (¢f. § 13).



'MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 19

If we deduce the values of B and C from the solution (76), and substitute in the six
boundary equations the values so obtained, we shall be left with six linear and
homogeneous equations between the six E’s. Eliminating the six E’s, we have a
single relation between n, the constants of the nebula and p. Now it will be seen
that it will always be possible to pass to the limit p = 0 in this equation, since this
amounts only to finding the ratio of the values of f; or f; at the two boundaries.
The equation obtained in this manner will give us a knowledge of the configurations
at which a change from stability to instability can take place.

§ 19. It therefore appears that it is not sufficient to consider vibrations of frequency
p = 0 as represented by positions of ¢limiting equilibrium.” The method of
PoincarE* for determining points of transition from stability to instability is not
sufficiently powerful for the present problem ; indeed it appears that it is liable to
break down whenever there are boundary-equations to be satisfied. t

It is of interest to notice that this complication is not (as might at first sight be
suspected) a consequence of our having taken thermal conductivity into account.
For we can put C = 0 and remove the equation of conduction of heat without causing
any change in our argument, except that the right-hand member in equation (74) must
be replaced by a determinant consisting only of the minor of the bottom right-hand
member in the present determinant. The value of A is now

A =p*D, + D,,

and the number of boundary-equations is of course meduced from six to four.. Thus
an exactly similar situation presents itself, although we are now dealing with
a strictly conservative system.

The consequences of this result are more wide-reaching than would appear from
the present problem, inasmuch as all problems of finding adjacent configurations of
equilibrium are affected. For instance, it appears that an equilibrium theory of tides
is meaningless except in very special cases (e.g., when the elements of the fluid in
which the tide is raised are physically indistinguishable).

If we attempt to calculate by the ordinary methods the tide raised in a mass of compressible fluid by
a small tide-generating potential, we reach a number of equations which are (except in special cases)
contradictory. To take a simple case, suppose we have a planet of radius Ry covered by an ocean of
radius R;, the whole being surrounded by an atmosphere which maintains a constant pressure = at the
surface of the ocean. Let the law of compressibility be = = ¢p, where ¢ varies from layer to layer of the
ocean. Let the tide generating potential be a"S,. Then the equations of this paper will hold if we
write p = 0, C = 0, ignore the equation of conduction of heat, replace AT everywhere by ¢, and include in

* «Sur I'Equilibre d'une Masse fluide . . . .”"—¢ Acta. Math.,’ 7, p. 259.

T There is not, of course, a flaw in POINCARE’S analysis, but he works on the supposition that the
potential-function is a holomorphic function of the principal co-ordinates, and this supposition excludes a
case like the present one.

D 2
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V a term a¢™. Equation (39) gives (except in the special case of ¢ = constant), B = 0. Equations (50)
and (51) remain unaltered, and give a solution of the form

A= E1f1 (’I’) + ngg (/I').

Now we must have A = 0 when » = Ry, and this determines the ratio E;/E;. Also equation (49) must be
satisfied, and this leads to a second and different value for E;/E,.

A second example, of less interest but greater simplicity, will perhaps help to elucidate the matter.
Imagine a non-gravitating medium in equilibrium under no forces inside a rigid boundary. Let the law
connecting pressure and density for any particle be @ = xp, where « varies from particle to particle. In
equilibrium = has a constant value =y, Suppose now that we attempt to find an adjacent configuration
which is one of equilibrium under a small disturbing potential V. The general equations of equilibrium
are three of the form

If the position of equilibrium only varies slightly from the initial position, dw/dz will be a small quantity
of the first order, so that (to the first order of small quantities) p may be replaced by its equilibrium value

wy/x. We now have
dw _ @y dV
de  « dz’

and therefore, since = is a single-valued function of position,

1dv , _ :
J;%ds_o..............(1.),

the integral being taken along any closed path. Since V and « are absolutely at our disposal, this
equation is, in general, self contradictory. What we have proved is that there will only be an ““adjacent ”
configuration of equilibrium under a potential V if V is a single valued function of «, a condition which
will not in general be satisfied by arbitrary values of V and «.

It is not difficult to see the physical interpretation of this last result. There were initially an infinite
number of equilibrium positions, and therefore an infinite number of vibrations of frequency p = 0. To
arrive at the configuration of equilibrium under the disturbing force we must imagine vibrations of
frequency p = 0 to take place until equation (i.) is satisfied ; the disturbed configuration will then differ
only slightly from the configuration of equilibrium. For instance, if the disturbing field of force consists
of a small vertical force g, the fluid must be supposed to arrange itself in horizontal layers of equal density,
before we attempt to find the disturbed configuration.

The interpretation of the result obtained in the first instance is similar, but more difficult. Consider
a linear series of equilibrium configurations, obtained by the variation of some parameter a, such that the
spherical configuration of our example is given by @ = 0. The other configurations are not symmetrical,
the asymmetry being maintained, if necessary, by an external field of force. Every degree of freedom in
the configuration ¢ = 0 must have its counterpart in the configurations in which ¢ is different from zero.
In particular, the principal vibrations of § 12, in which (for the configuration ¢ = 0) the dilatation, normal
displacement, and temperature-increase all vanish, must have counterparts for all values of a. But when
a is different from zero, the above three quantities cannot be supposed to all vanish. In general, therefore,
these degrees of freedom provide solutions of the volume-equations, and these solutions contribute to the
boundary-equations. In the special case of @ = 0, these solutions do not affect the boundary-equations at
all, so that to rectify the boundary-equations we must, so to speak, take an infinite amount of these
solutions. In other words, the complete vibration of frequency p = 0 becomes identical with one of the
vibrations of § 12, in which %, A, and T; all vanish.
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An Isothermal Nebula.

§ 20. Let us now examine the form assumed by our equations in the simple case in
which N and T are the same at all points of the nebula. We find that, considering
only the equations for the case of p = 0, equation (39) reduces to

C=0 . . . . . . . . . . . ()

and, in virtue of this simplification, the equation of conduction of heat (36), and the
two thermal boundary conditions (33 and 34) are satisfied identically. We are left
with equation (55) to be satisfied throughout the gas, and equations (32), (85), (52),
and (53) to be satistied at the boundaries.

The solution of equation (55) is given in equation (56). Now we must satisfy
equation (32) by taking B = 0 at » = R, and this, by equation (50), gives the value
of A at » =R, in terms of E, and E,. Hence equation (52) reduces to a homo-
geneous linear equation between K, and K, :

When n is different from unity, we satisfy equation (35) by taking A = 0 at
r = Ry, and this reduces equation (53) to a homogeneous linear equation between
E, and E,.

When n = 1, equation (35) reduces to a linear equation between (A),_y, E; and E,
Equation (53) is a second equation of the same form, and the elimination of (A), _x,
from these two equations leads to a homogeneous linear equation between E, and E,.

Thus, in either case, we see that the whole system of equations reduces to a pair
of homogeneous linear equations between E, and E, The elimination of these
quantities leaves us with a single equation between n and the constants of the
nebula.

We can, therefore, satisfy all the equations for a vibration of frequency p = 0 by
imposing a single relation upon the constants of the nebula. The unknown solutions
which are multiplied by E; and Eg have not been taken into account at all, but since
the condition that there shall be a vibration of frequency p = 0 must of necessity
reduce to a single equation, it will be clear that if these solutions had been taken
into account, we should have found it necessary to take E; = E; = 0.

Thus, in the case which we are now considering, a vibration of frequency p = 0
is equivalent to a configuration of limiting equilibrium. It is not hard to see that
this results from the fact that the particles of which the nebula is composed are
physically indistinguishable. This very fact, however, introduces a further complica-
tion into the question. It will be noticed that, although the value of & has been
found at every point of the nebula, it is impossible to determine the separate values
of A and B. On the other hand, the physical vibration must have a definite limiting
form when p = 0. Now it is easy to see that a motion of the gas in which
€ vanishes at every point of the gas, and in which A and B vanish separately at the
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boundary, will, in every configuration of the gas, satisfy our equations with p = 0.
Such a motion, in fact, simply leads to a configuration which is physically
indistinguishable from the initial configuration, and in which the potential energy
remains unaltered. The motion which we have found from our equations is the sum
of a motion of this kind, and a true limiting vibration. It is impossible to separate
the two motions, except by considering vibrations of frequency different from zero,
but fortunately the question is not one of any importance.

§ 21. Let us now attempt to form the final equation in some cases of interest. The
equations of an isothermal nebula at vest under its own gravitation have been
discussed by Professor Darwin.* Our function u (equation 54) is given, in the case
in which the nebula is isothermal, by the equation

2mrprr?
u-_.m‘..,..,.,.,..(78),

and it will be seen that this is the same as the u of Professor DArwin's paper. It
appears that in general v cannot be expressed as a function of # in finite terms, but a
table of numerical values of v is given. The value of » approximates asymptotically
to unity at infinity, so that at infinity p varies as »> DarwiN's nebula extends
from 7=10 to » = co, but it is obvious that we may, without disturbing the
equilibrium, replace that part of the nebula which extends from # = 0 to » = R, by
a solid core of mass equal to that of the gas which it replaces. We may also remove
that part of the nebula which extends from 7 == R, to » = o, if we suppose a pressure
to act upon the surface » = R, of amount equal to the pressure of the gas at this
surface. We may suppose the medium outside this surface to be of any kind we
please, but as it has already been pointed out that the pressure can, in nature, only be
maintained by the impact of matter, we shall suppose that this matter is of a density o
which is continuous with the density p of the nebula at the surface of separation.
‘We may now write equation (52) in the simple form

L‘zg(f’ﬂ=° N ()

We have, up to the present, supposed the nebula to be acted upon by a spherically
symmetrical system of forces in addition to its own gravitation. Now it is essential
to the plan of our investigation that we shall be able to make the configuration of the
nebula vary in some continuous manner, and this compels us to retain this generali-
sation. We shall, however, suppose that when the nebula extends to infinity,
u retains some definite limiting value w,, thus including the free nebula as a
special case.

* (. H. Darwix, < Phil. Trans.” A, vol. 180, p. 1.
¥ Loc. cit., p. 15.
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§ 22. Let us, in the first place, consider the “series” of nebule such that » has a
different constant value for each. This series includes a single free nebula, for it
appears from DARWIN'S paper that there is a nebula such that « = 1 at every point.
This nebula, it is true, has infinite density at the centre, but this objection disappears
when the innermost shells of gas are replaced by a solid core, the mean density of the
core being equal to three times the density of the gas at its surface, and therefore
finite. Let us, in the first instance, simplify the problem by supposing that the core
is held at rest in space. The boundary equations (35 and 53) which have to be
satisfied at » = R, now take the forms

(A)er, =0 . . . . . . .. (80),
d

LE;(E“"W)] =0, . . ... ... (8D,

r=R,

independently of the value of n. The value of u in equation (55) being now
independent of r, we may write the solution (56) in the form

E=Epr+Ep* . . . . o L . L. (82),
in which p, pu” are the roots of the quadratic,

v tt—=1)=nm+1)—2u. . . . . . . . (83)
We accordingly have

pt =1 p—p =2y 5 = 2u; g’ = — (1) 4 20 . (84),
Equation (79) now takes the form
E (e n) Ryt 4 By (0 + ) Ry 7'=0 . . . . (85),
while equation (81) becomes
Ei(p=n—1) Ry "+ By(p/ —n—1) R *=0 . . . (86)

The elimination of E, and E, from these equations gives

EYNCEDTELER

Re/ T (p+n) (W —n—1) (87).

The fraction on the right hand can be simplified by the help of equations (84); it
is equal to

2=+ 3 —(p—w)(+ )

2=+ +(p—w)m+ 1)
(

Now the left-hand member of (87) may be replaced by

cosh [} (u — w') log (By/Ry)} + sinh {} (u — ) log (By/Ry)}
cosh {} (i — ') Tog (By/Ro)} — simh (} (s — ) log (By/Ro))
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so that the equation itself reduces to
bl —p) (n + )

tanh {3 (x — ') log (Ry/Ry)} = w— (n 4 Ly .. (88).

This equation expresses the relation which must exist between R/Ry and p — p/
(or, what is the same thing, between R,/R, and u), in order that p = 0 may be a
solution of the frequency equation.

§ 23. We shall be able to interpret this equation most easily by adopting a
graphical treatment. If we write

2 (n+ 1 1 - o
r=1(p—p?>, y=-— x-{—(?n +Zz)2’ Yy = \/io tanh {/x log (R)/R)},

then the equation can be written in the form
Y= Vo

It will be noticed that , remains real when « is negative, an equivalent expression
for y, being

The roots of equation (87) are now represented by the intersections of the graphs
which are obtained by plotting out #, and ¥, as functions of @. These two graphs

Yy Y

Fig. 1. Fig. 2.

are given in figs. 1 and 2 respectively, the graphs being drawn separately for the
ake of clearness. The graph for y, is, of course, the same for all values of R)/Rg;
that for 7, can be varied so as to suit any value of R/R, by supposing it subjected
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to an appropriate uniform extension parallel to the axis of y, and contraction parallel
to the axis of a, or wvice versa. Similarly, different values of (n 4 }) can be
represented by contraction and extension of the first graph. '

If we imagine these two graphs superposed, we see that there cannot, under any
circumstances, be an intersection in the region in which x is positive, 7.e. (equation
(84)), for a value of u less than & (n 4+ 4)%.  The lowest value of « for which an inter-
section can possibly occur is v = 1, and this occurs only when R,/Rj = «. AsR /R,
decreases from infinity downwards, the lowest value of u for which an intersection
occurs will continually increase. Whatever the value of R,/R, may be, there are
always an infinite number of intersections in the region in which u > & (n + £)%

The values of u found in this way determine the ‘ points of bifurcation” on the
linear series obtained by causing « to vary continuously. Thus we have seen that as
u continually increases the first point of bifurcation of order » is reached when u has
a value which is always greater than & (n 4+ %)% When R /R, is very large, the first
point of bifurcation is of order n = 1, and its position is given by

w=1% . . . . . . . . . . . (89)

§ 24. Let us, in future, confine our attention to the case in which R/, is very
large. If we gradually remove the restriction that w is to be independent of #, the
various vibrations of frequency p = 0 will vary in a continuous manner. Equation
(55) remains unaltered in form, and, at infinity, it assumes the definite limiting form

& , ,
Tg'mi:{“(“-i-l)—‘Zuw}f Coe e (90),

where u,, is the limit (supposed definite) of w at infinity. It therefore appears that
at infinity the solution for & approximates asymptotically to that given by equation
(82), if p, p’ are now taken to be the roots of

tt—=D=nn+1)—2u, . . . . . . . (91)

Equation (85) accordingly remains unaltered. Equation (81) takes a form which
is no longer represented by equation (86), but which will impose some definite ratio
upon B, and E,. It is therefore clear that when R, is very great, equation (85) can
only be satisfied, at any rate so long as p and u’ ave real, by taking p — u’ very
small. Thus a point of bifurcation will again be given by u — ' = 0, our previous
investigation sufficing to show that this gives a genuine solution to our problem, and
does not correspond to an irrelevant factor introduced in the transformation of our
equations. This point of bifurcation is moreover the first one reached as u increases,
since it is at the point at which u, ' change from being real to being complex.

VOL. CXCLX.—A. i)
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We conclude that, independently of the values of « at points inside the nebula,
the smallest value of wu, for which a vibration of zero frequency and of order n is
possible is given by

e =% -5 . . . . . . (92),

or, for all orders, 1s given by

e =1§ . . o o L0 (93),
the limiting vibration being of order n = 1.

It ought to be noticed that for this limiting vibration equation (82) fails to
represent the solution owing to w and p’ becoming identical. The true solutions for
real, zero, and imaginary values of u — u” may be put respectively in the forms

= C/rsinh {}(p — w) log eR},

&= (, v log eR,
= Cl\//in'-sin { :) (p — p')log el"u} )

in which C; and e are constants of integration.
At nfinity p vanishes to the order of 1/7°, so that dp/dir = ~— 2p/r. The value of
& for very great values of 7 is therefore (equation (50))

£ =\T (— 2A + B»).

At the outer boundary a surface - equation (32) directs us to take B = 0.
Following this out, we find that at infinity A is of the same order as ¢, and therefore
becomes infinite to the order of 4/7.  Suppose, on the other hand, that we start by
taking A = 0, so that B = &\T». The value of B now vanishes at infinity to the
order of 1/ V7, and the surface-equation (32) is satisfied by a motion which vanishes
at infinity. Tt would therefore appear to be easier to satisfy the boundary conditions
when 7 is actually infinite than when 7 is merely very great. This result opens up a
somewhat difficult question, which will be considered in the next section.

Before passing on, we may consider in what way the results which have already
been obtained will be modified, it we suppose the core of the nebula to be free to
move in space, instead of being held fast. For the free nebula u, = 1, so that our
results show that a free nebula will be stable if the core is supposed fixed. The
same must therefore obviously be true when the core is free to move, since a motion
in which nebula and core move as a single 1igid body will not influence the potential

energy. When the nebula is not firee, fixing the core may be regarded as imposing
< [ < . <
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a constraint which does no work; freedom of the core therefore tends towards
instability. It will be proved in § 28, that a nebula is stable for values of u, which
are less than the critical value, and unstable for values greater than this value.
Assuming this for the moment, we see that a nebula in which the core is free to move
must necessarily be unstable it u,, has a value greater than 1L

If then, we start with a free nebula and imagine v, to gradually increase from
u, == 1 upwards, the core being free, it follows that the nebula will first become
unstable when w, reaches some value such that

>u.>1 0 0 0 0 0L (94)

§25. The nebula extending to infinity, let us attempt to find the displacement
which will be caused by a small disturbing potential v, given by

— ,._,,.___,._ ffo N O A
U= g {W“ Foart S, oo 0o (9).

Tt is clear that the displacement required will be given by our equations if we
include in 'V (equation (27)) the terms

4 tt
—_— s a 7'-75 .
I 4 1 |t 1

The equation replacing (42) may be transformed in the manner of § 15, and the
resulting equations will be those of § 16, except that we must replace (52) by

IM .ll eyl J— ,AAQ)_:'E-O
[Tﬂn dr (é:l )]1':R! - al - l_ =1 ]r—Rl * * : * ‘ ‘ (96)’

and (53) by a similar equation.

If a displacement can be found to satisfy these modified equations, the external
disturbing potential which will be required to hold the system in this displaced
position will be given by equation (94). Now the condition that this displaced
position shall be one of limiting equilibrium is that this disturbing potential must
vanish. To be more precise, v, must be such that the force derived from it vanishes
at every point of the nebula. 'We must therefore have

art =0

at all points of the nebula, including » = R. Now (95) may be regarded as an
equation giving «, in terms of R;. Taking p =0, as before, we find from (95)

’,). n 1 (l N
= (5 e ir €]

w2
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and this vanishes at all points, including » = R, in the case in which R, is put equal
to infinity, if

., & _
TAE;T—O T (14
The condition that ay/r"*' shall vanish at every point would lead to a similar
equation to be satisfied at the origin, if there were no core. If, however, we retain
the core, it leads to the same equation as was found in § 22 (equation (81), when the
core is held at rest). Thus, our present method of finding a position of limiting
equilibrinm has led to a result different from that obtained by the search for a
vibration of zero frequency, in that equation (97) replaces equation (79).
The value of & at infinity is given by equation (82); hence we have

]—J«// — l‘]?‘lv./L*I + ,[(_14]7"“,—..] |,~;;m . ‘ . ° s . . . (98).
r=w 1 ) : ’
As before, the equation to be satisfied at » = R, determines the ratio of E; to E, :

equation (97) is therefore satisfied it the real parts of p and p’ are cach less than
unity. Now g, p/ are the roots of equation (91), hence this condition is satistied
provided

n(n 4 1) <2w, . . . . . . . . (99)

§ 26. Let the kinetic and potential energies of a small displacement be given, in
terms of the principal co-ordinates, by

2T = alz;slg + oy + . .
2V =0bx? 4+ byx,® + .

so that the equations of motion are

601551 —bax=0
&e., and p? is given by
ap*=>0b . . . . . . . . . . (100)

The method of §§ 20-24 amounted to finding vibrations such that p® =0, and
therefore, by equation (100), solutions of

by=0. . . . . . . . . . . (101)

In § 25, on the other hand, we started with the supposition that the nebula extended
to infinity, so that all the quantities ¢ and b are liable to become infinite. The
equation giving vibrations of frequency p == 0 is no longer equation (101), but is

L=o0 . . ... (102)

Ry=o “1

and this is obviously more general than equation (101).
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It will be noticed that the method of §§ 20-24 is the method which is mathematically
appropriate to the case of a nebula enclosed in a surface maintained at constant
pressure, while the method of § 25 is that appropriate to an infinite nebula. In the
former case, a vibration of frequency p = 0 may represent a real change from stability
to instability ; in the latter case such a vibration leads to an adjacent configuration of
equilibrium, and is, in this sense, a point of bifurcation, but does not denote a change
in the sign of p?

The General Case of a Nebulw extending to Infinty.

§ 27. The method to be followed has been explained in § 18. The general
differential equation is of the sixth order. Four solutions have definite limiting forms
when p = 0; the remaining two take singular forms. The former have been examined
in § 16; the latter are represented mathematically (p. 18) by functions which do not
approach a definite limit as p approaches a zero value, and physically (p. 11) by
systems of steady currents.

There are six constants ot ntegration, I, E,, I, I, I, 15, of which the two last
belong to the singular solutions. Let us suppose (as is always possible (p. 19)) that
the ratios of these six constants are determined from five of the boundary-equations,
that which is not used being the equation satisfied by & at the outer boundary. This
remaining boundary-equation now takes the form (¢f. equation (56))

Eyy (Rl) + By, (Rl) + Egy (Rl) + Egis (Rl) =0 . . . (103)»

in which the four F’'s are definite quantities. The four Y's must have definite
limiting values (zero and infinity being included as possible values) when R = o,
Thus in equation (103) some terms must preponderate over the others. When the
nebula is isothermal, these terms are the first two. Hence, when the nebula is not
isothermal, it follows from the principle of continuity, that the same two terms must
still preponderate, at any rate for some finite domain including the isothermal
nebula.  Otherwise it would be possible to change the stability or instability of
a nebula by an infinitesimal change in the physical constitution of the nebula.
Hence throughout this domain, equation (103) must reduce to its first two terms,
7.e., must become formally the same as in the case of the isothermal nebula. But
the solution for & (and therefore the functions v, ¥,), remain formally the same in the
general case as in this particular case, and therefore the stability-criterion derived
from equation (103) remains formally the same.

It follows that whether the nebula is isothermal or not (provided always that the
configuration lies within a certain domain of equilibrium configurations) the critical
configurations are given by the two equations (92) and (99).
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Exchange of Stabilities.

§ 28. We have now completed an investigation of the configurations at which
a transition from stability to mstability can occur, as regards the spherical form, for
vibrations of orders different from zero. It is unnecessary to discuss vibrations of
order n == 0, for the following reason.

Our problem is to determine the changes in the configuration of a nebula which
will take place as the nebula cools, starting from o spherical configuration, supposed
stable.  We are not concerned with the succession of spherical configurations, but
only with an investigation of the conditions under which a spherical configuration
becomes a physical impossibility. Now a point of bifurcation of order n = 0 does
not indicate a departure from the spherical configuration. It indicates a choice of
two paths, one stable and the other unstable, and the configurations on both paths
will remain spherically symmetrical.

We have therefore determined already the circumstances under which a transition
from a symmetrical to an unsymmetrical configuration can occur. It remains to show
that there is, in effect, an exchange of stabilities at a point of bifurcation, and to
examine on which side of the point of bifurcation the spherical configuration is stable.

We are going to prove that the spherical configuration is stable for all values of «
less than u,, the lowest value of u at which a point of bifurcation of order different
from zero can occur. Our method will be as follows : Any two equilibrium configura-
tions can be connected by a continuous linear series of equilibrium configurations, and
w will vary continuously as we move along this series. If one of the two terminal
configurations is stable, and if’ the linear series can be chosen so that « does not at
any point of it pass through a value for which a vibration of frequency p = 0 is
possible, then we know that the other terminal configuration is also stable.

The value of y, the gravitation constant, has been taken equal to unity. If this
constant is restored, the value of u hecomes (equation (54))

. o ,([P /(Zm
1= Zmypl dr | dr

Since w == \1T'p, we have
P

12653 @,

— " m m {/P R
ar P dr \)\l) + M dr

For an infinite nebula, the first term on the right-hand of this equation will
vanish at infinity in comparison with the second. - Hence we have as the
value of u,

4, 2moypr

Uy == I

we= LT (104)
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If we write y = 0 we pass to the case of a non-gravitating nebula, and we see
that v, = 0 provided the ratio of pr? to AT remains finite at infinity. Now we can
keep the value of p and AT the same at every point by subjecting the nebula to
an appropriate external field of force, and this field of force will be exactly the same
as the gravitational field which was annihilated upon putting y = 0. It is spheri-
cally symmetrical, and its potential vanishes at infinity to the order of 1/r, so that
it comes within the scope of our previous analysis. For values of y intermediate
between the natural value (y = 1) and the value y = 0 we can obtain the same
result by taking a field of force equal to 1 — y times the foregoing. As we increase
y from 0 to 1 we obtain a linear series, in which the configuration of the nebula
is unaltered, the nebula being gradually endowed with the power of gravitation.

For the general configuration of this series, consider the work done in a specitied
displacement, which is proportional to S, at every point. The potential (gravitational
+ that of external field) after displacement will be of the form

a + byS,,

where a and b are functions of  and independent of y.  The total work done against
this field during the displacement is therefore of the form

By,

where B is independent of v and depends solely upon the particular displacement
selected. The work done against the elastic forces is of course independent of 1y,
and depends solely upon the displacement selected. This work is essentially positive.
The total work is therefore of the form

A 4+ By,

where A is positive and B may (§ 2) be negative. Since y is proportional to w, this
may be written

A4+Bu, . . . . . . . . . . (105)

Suppose this function caleulated for all possible displacements. Then we shall find
that for values greater than some definite value of u, it is possible for the work
done to become negative. For values of u, less than this critical value, the work
will be positive for all displacements. Hence from the form of expression (105)
it follows that the passage of w, through a critical value denotes a real change from
stability to instability, and that the stable configurations ave given by the smaller

values of u,,.
Recapitulation and Discussion of Results.

§ 29. We have seen that the vibrations of any spherical nebula may be classified
into vibrations of orders » = 0, 1, 2, &ec., a vibration of any order » being such that
the displacement and change in temperature at any point are each proportional to
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some spherical surface harmonic S, of order n. The frequency of vibration is
independent of the particular spherical harmonic chosen, depending only upon the
order n.

The vibrations of order n = 0 have been seen to be of no importance ; the stability
of the vibrations of orders different from zero has been discussed, in the limiting case
in which the nebula extends to infinity, with the following results :—

Starting from any stable configuration of spherical symmetry, the vibrations of any
order n, different from zero, all remain stable until the function wu,, defined by
equation (104), passes through a certain critical value. In any case this critical
value is first attained for a vibration of order n = 1.

For a nebula which actually extends to infinity, the critical value is w, = 1.
When this value is reached we come to a second series of equilibrium configurations,
the form of which will be investigated later. If this value is passed, the configura-
tion remaining spherical, there will not be vibrations in which the time enters
through a real exponential factor, because the critical vibrations remain of frequency
p == 0, the inertia of the nebula being infinite.

1f the radius R, of the nebula is regarded as very great but not infinite, this
statement is not true, since the inertia cannot now become infinite. In this case the
first new series of equilibrium configurations is again reached when (u),.y, attains a
certain critical value, and the critical vibration is again of order n == 1. The critical
value of (u)..r, has not been calculated, but when R, becomes infinite, it has a
limiting value which has been shown to lie between I and 1.

Taking v = 1, we have as the value of u,,

o 2mrpr?
Uy = Li--

L= Coe oo (106).

The question of stability turns entirely upon the value of this function, which may
appropriately be termed the “ stability-function.”

We now see that the whole question of stability depends upon the ratio of the
density to the elasticity at infinity. This result is not hard to understand. In the
first place, since the nebula extends to infinity, we may, so to speak, measure it upon
any linear scale we like. If we measure it on a sufficiently great scale, the nebula
still remains of infinite extent, but the variations in temperature or structure which
oceur near the centre can be made to appear as small as we wish, and the solid core
can be made to appear as insignificant as we wish. Thus by measuring any nebula
upon a sufficiently great scale we can make it appear indistinguishable from an
isothermal nebula, and the critical vibration for which p = 0 does not disappear from
sight, since in the limit this vibration (measured by f/?) remains finite at infinity,
Further, as Professor DARWIN points out, we can make it appear like a nebula in



MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 33

which » maintains a constant value throughout.* Passing on, we notice that the
stability function now depends solely upon the ratio of the density to the elasticity.
The different elements of the nebula are attracted towards one another by their
mutual gravitation, and are kept apart by the elasticity of the gas. For certain
values of the ratio of these two systems of forces, it will be possible to find displace-
ments in which the work done by one system exactly balances that done against the
other, and these are the critical vibrations.

The stability function u, is a function only of the quantities determining the
equilibrium configuration of the nebula, and its value may therefore be found from
the equations of equilibrium. We proceed to examine the value.

" EVvALUATION OF THE STABILITY FUNCTION.
General Case of oo Nebula at Rest.

§ 30. We have already quoted Professor DArRwIN'S result that w, =1 for an
isothermal nebula at rest, and the considerations put forward in the last section will
probably suggest that the result in the more general case will be found to be
independent of variations in temperature at finite distances, provided only that
the temperature has a definite limit at infinity. We shall, however, examine the
question ab wnitio, using a slight modification of DArRWIN'S method, and making the
problem more general by retaining a spherically symmetrical system of external
forces.

We shall denote the potential of this system of forces by V', and nse V to denote
the gravitational potential of the nebula itself. The total potential is now V 4V,
so that the equation of equilibrium, equation (11), takes the form

1 d

d /
S OTe) = (V- V) =0,

and if M is the mass of the solid core, this can be written

K (NTp) + 4w r prrdr + M — r? av! =0 .. (107)
p dr P R, dr o )
Differentiating with respect to »,
d [ d > o  a [ ,dV’
dr <p dr (}\Tp)/ + dmpr — dr <_7 d7'> =0
Write
)\Tp = ¢,
* & H. DARWIN (l.c. ante, p. 16), “If we view the nebula from a very great distance, . .. the solution
of the problem becomes y = log 222” Now u = — 4a2d?y/dx? so that this solution is equivalent

to w = 1. This justifies our statement, and shows at the same time that for any nebula at rest and
in equilibrium u, has the critical value u, = 1, provided it is acted upon by no forces except its own
gravitation.

VOL, CXCIX,—A, F
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s0 that

(C 1 d
dr T ONT® (Zm,

then the above equation may be written

¥y

da

l av’
4 dgent — g2 @ (9*9' Y>—:O. Coo ... (ro8).

dr dr

\ /

At infinity we are supposing NT to have a definite and finite limit, so that the
limiting value of @ is 1/NT7.  Let us further suppose that ({/// < 7? /g/\) has a definite
limit given by / y /

(',i(ﬂ (Z) =V {109),
and that squares of V” may be neglected. Then the limiting form of (108) at
infinity is

72 Yerey v
By e o )
da? (ATz)* (AT)?
Wiite
A2
y=mn-+log-,
then
Ay Py 2 o? ,
g T ap T e T d? log (\T),
and

4erey Qen

NTof = o

Equation (110) is now transformed into

™y 2 d? v v .
T + .2 (6" —_ 1) -4 4 (172 1(){_; (}\ ]) - (K’l‘z)g =0 . . . . (111).

. . g &? . . .
In the special case in which B log (NT) vanishes, this may be written

Py 2 1 g 13 VN
da? + a? <’7 Tttt - ZKQTQ) =0,

and at infinity (i.e., for very small values of #), the solution is

v T (L i
U:W-i-«/-z‘cos%\/?'logﬁ/). Coe e (112)

where A, B are the two constants of integration,
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e
da?
clear that this term will vanish at infinity in comparison with the other terms
in (111), if % has the limiting value given by (112), and therefore that (112) is the
limit, at infinity, of the solution of (108).

Of the two arbitrary constants, A and B, the former corresponds to the indeter-
minateness of the linear scale upon which the nebula is measured, the second to the

In the more general case in which — log (AT) cannot be supposed to vanish, it is

indeterminateness of the conditions at the inner surface of the nebula. ~If there is no
core, there is only one value of A/B which will give a finite density of matter at the
centre of the nebula. Further information as to equilibrium configurations can be
found in Professor DARWIN’S paper, or in a paper by A. RirTeR.*

For our purpose it is sufficient to know that the second term in % vanishes with «
for all values of A and B. Hence at infinity

v AT
Y= gep T8,

p= K — XST% xz Ve )‘T oV
AT 27 2mrr? ’
and hence (equation (107))
21 i v
— AT o
Up =~ € =l+sop - - - - - - (113)

Putting V" = 0, we arrive at the anticipated result that the stability function has
a unit value, for every nebula which extends to infinity in such a way that \T
has a finite limit at infinity.

A Slowl_z.j Rotating Nebula.

§ 31. The case which is of the greatest physical interest, is that in which the
nebula is not at rest but is rotating in a position of relative equilibrium

Here the arrangement is no longer in spherical shells, so that the foregoing analysis
breaks down. If, however, we suppose the rotation  to be so small that o may be
neglected, it will be easy to modify the foregoing analysis, so as to take account of
rotation.

We shall still suppose the nebula to extend to infinity, so that we must not suppose
the rotation to be the same at all distances, for in this case a finite value of o would
imply an infinite velocity of those parts of the nebula which are at infinity. Let us

* ¢ Wied. Ann.,” vol. 16, p. 166.
¥ 2
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suppose that at infinity the linear velocity approximates to a finite limit, so that we

may write
w=Q/r

for all values of » greater than a certain amount.*

So long as we are only concerned with configurations of equilibrium and vibrations
of frequency p = 0, the rotation may be allowed for by the introduction of a force of
amount w® sin @ per unit mass, acting perpendicular to the axis of rotation ; or, what
comes to the same thing, by the introduction of a potential

F(1 — Py) Jr o™ dr,
or

where, for all values of »* greater than a certain value,
V=%20%logr . . . . . . . . . (114).

Let us examine separately the two effects arising from the two terms of this
potential, beginning with the term — P,V’.  There will in this case be a correction
to be applied to all equations, and this correction will consist of the addition of
a small term containing »’P,. Let us suppose that all symbols which have so far
denoted functions of 7, denote in future the mean value of the corresponding
quantities averaged over a sphere of radius . For instance, p is no longer the
density at distance » from the centre, but is the mean density over the sphere of
radius . The density at any point will be of the form p 4 *Pyp,, where p, is
a function of ».  'We may in every case equate the coefficients of different harmonics,
and by equating the coeflicients of terms which do not contain the terms «®P,, we
shall obtain the same equations as were obtained in the case of o = 0, except that
the meaning of every term is altered.

The equations derived from the parts which do not contain o will suffice, as before,
to determine p, so that the values of p are of the same form as before, except that
the quantities involved have a slightly different meaning. Hence the stability
criterion is still given by the value of the stability function u,, ; while equation (107)

* This particular law is chosen for examination because it leads most quickly to the required result,
The case in which o vanishes at infinity more rapidly than 1/r is covered by taking £ = 0. Here,
however, the angular momentum vanishes in comparison with the mass, and it is not surprising to find
that a rotation of this kind does not affect the question of stabitity. The case in which o vanishes less
rapidly than 1/r is physically impossible, since it gives an infinite linear velocity at infinity, but may be
theoretically included in the case of = 0.

Any special assumption about the value of w at infinity must, however, disappear when we turn to the
case of a finite nebula (§ 26), in which € may be appropriately supposed to correspond to the surface

velocity oR;.
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remains true, if the new meaning is given to the‘symbols in each case. We conclude
that the question of stability is not affected by the potential — P,V".

The remaining potential term is the spherically symmetrical term V'.  The total
potential may now be taken to be V4V’, and this potential, besides being spherically
symmetrical, satisfies the condition which was postulated in the determination of the
criterion of stability ; namely, that its radial differential coefficient shall vanish at
infinity to the order of 1/r.  The value of the derived function V” (equation (109)) is

rmo AP dr

, ) A 0 e .
V=1L <’12 '—> = 302, by equation (114).

Hence the stability function is given by (¢f. equation (113))

0°
e =1 F gun

We have therefore found that when an infinite nebula is rotating, with such
angular velocities that the linear velocities at infinity have the limiting value Q, the
value of u, is greater than unity no matter how small Q may be. This result has
only been obtained on the supposition that «* may be neglected. We have obtained
no information as to what happens when o' is taken into account, .e., when the

square of the ““ ellipticity ” of the nebula is taken into account.

Influence of Viscosity.

§32. No account has so far been taken of the viscosity of the gas. The terms
arising from viscosity which may be supposed to occur in the true equations of
motion, will contain the coefficient of viscosity (n), and will in each case depend on
velocities and not on displacements. Hence viscosity enters the equations of motion
through the factor uip. The vibrations for which p = 0 are accordingly unaffected
by viscosity, and since it is upon the existence of such vibrations that the whole
question of stability turns, it is clear that the results already obtained must remain
true even in the presence of viscosity.

It can be shown that equations (24) to (26) specify a principal vibration, whether
the gas is viscous or not. The result is stated without proof, as the proof is rather
lengthy, and has no bearing upon the main question under discussion.

A Nebula wn Process of ’Cooling.

§ 33. In the mathematical investigation we have been concerned with vibrations
about a position of absolute equilibrium. In nature, no such position of absolute
equilibrium will occur ; the condition of the nebula will be incessantly changing.
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Let us suppose the temperature of the nebula to be continually cooling, owing
either to radiation of heat from its surface or to a process of quasi-evaporation such
as is described in Professor DARWIN'S paper (§ 13 or p. 66). Since the gas (or quasi-
gas) 1s not a perfect conductor, the nebula will not at any time be in perfect thermal
equilibrium. The changes in density of all parts, and in the temperature of the
inner parts of the nebula will, so to speak, lag behind their equilibrium values as
determined by the changes in the temperature of the outer part of the nebula. It
is, therefore, clear that so long as the nebula is cooling, the ratio of the density to
elasticity in the outermost layers of gas will be greater than that calculated upon
the assumption of perfect equilibrium. This “lag” accordingly decreases the value
of' the stability-function, and so supplies a factor which tends to instability.

SUMMARY AND DiscussioNn oF RusuLts.

§ 34. Let us now examine to what extent we have found solutions of the two
problems propounded in § 4.

Firstly, as regards the stability of a spherical nebula of very great size, of which
the outer surface is maintained at constant pressure. We have found that the
stability-function for such a nebula (in the limiting case in which the outer radius is
infinite) has a unit value when the nebula is in equilibrium and at rest. This value
is increased by allowing for the “lag” in temperature caused by the cooling of the
nebula. It is also increased by a rotation of the nebula, at any rate so long as this
rotation is small. The nebula will become unstable as soon as the stability-function
becomes greater than a certain value, which has not been calculated, but is known to
be between 1 and 1. The investigation of § 23 leads us to expect that the critical
value of the stability-function will increase as R, decreases, although this has only
been strictly proved for a single case.

It is therefore possible that, even when the nebula is non-rotating, the temperature-
lag may be sufficient to make the nebula unstable. If we disregard the temperature-
lag, it seems probable that a small rotation will suffice to bring about instability.
This latter question, however, deserves more detailed examination.

§ 35. Let us suppose that the nebula starts from rest in a configuration of absolute
equili'brium, and that the rotation is gradually increased. In this way we obtain a
linear series of configurations of relative equilibrium. When the rotation is small,
the configuration, instead of being strictly spherical is slightly spheroidal. The
series we are considering is therefore the analogue of the series of MACLAURIN
spheroids of an incompressible fluid. So long as the rotation remains small, we may
separate the two terms of the rotation-potential in the manner explained in § 31.
We may, in fact, suppose our analysis still to apply as if the configuration remained
spherical, and the only effect of the rotation is to increase the value of the stability-
function, For larger values of % all our results are subject to a correction of the
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order of w'. For small values of «? the value of »® will be proportional as we have
seen (§ 81) to u, — 1, so that this correction may be supposed to be proportional to
(wo— 1) The first points of bifurcation of orders 1, 2 occur (in the spherical
configuration) at u,— 1 =0, 2§ respectively, where 6 is known to be less than .
Now it would seem to be fairly safe to neglect 6% but even if we waive this point, it
will be admitted that the correction of the order of (v, — 1)* cannot be so great as to
change the order in which these two points of bifurcation will occur.

We therefore see that a rotating nebula will become unstable for a comparatively
small value of «? the critical vibration being of order n = 1. The new linear series
is one in which (except for the spheroidal deformation caused by the rotation) the
surfaces of equal density remain spheres, which are no longer concentric. The linear
‘series of order n = 2 will accordingly be unstable : this is the analogue to the series
of Jacobian ellipsoids in the incompressible fluid.

§ 36. The case of a nebula which actually extends to infinity is much simpler.
Here the value of u, is again unity, and this value is increased, as before, either by
bemperature-lag or rotation. Every point at which u,, is greater than unity is in one
sense a point of bifurcation, since starting from this point there is a series of
unsymmetrical equilibrium configurations. ~Strictly speaking, these points do not
indicate an exchange of stabilities, for the critical vibrations remain of frequency
» =0 even after passing the point. They possess, however, the property that a
critical vibration, if once started, will continue increasing, since the forces of
restitution (of whichever sign) vanish in comparison with the momentum of the
vibration.

§ 37. Let us now try and examine which of these two hypotheses is best capable of
representing the “primitive nebula” of astronomy. Imagine a sphere S drawn in
the nebula, the radius being @, and the pressure at this surface =. The matter
inside S is to form a spherical nebula of finite extent, bounded by a sphere over
which the pressure is , and this matter is to be of a density sufficient to warrant us
in assuming the gas-equations at every point. The surface S will be continually
traversed by matter, but this will be of no consequence if the losses and gains
balance in every respect. The matter outside S must supply the pressure u, and
will also, as was explained in the introduction (§ 3), influence the matter inside S by
its motion.

Imagine the matter inside S to be executing a small vibration, and consider two
extreme hypotheses as to the behaviour of the matter outside S.

Suppose, in the first place, that the matter outside S is such that it and the
matter inside S together form a perfect spherical nebula at rest. Then the motion
of the matter outside S is given by the equations of vibration of such a nebula, and
the influence of this matter upon that inside S is exactly that required in order to
enable the matter inside S to execute the vibrations given by the equations of an
- infinite nebula.
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Suppose, next, that the matter outside S consists mainly of molecules or of masses
of matter which are describing hyperbolic or parabolic orbits, or which come from
infinity and after rebounding from the nebula return to infinity. Suppose, further,
that the interval during which such a mass is appreciably under the influence of the
matter inside S is so small that it is not appreciably affected by the motion of the
latter. In this case the matter outside S may be regarded as arranged at random,
independently of the vibrations of the matter inside S; it will not, as under our first
supposition, take up the motion of the matter inside S to any appreciable extent:
Hence the matter outside S will exert no force upon that inside S except the
constant pressure m, and the vibrations of the matter inside S will be those of a
spherical nebula of finite size, bounded by a surface at constant pressure .

These two extreme hypotheses lead, as we can now see, to the two conceptions of a
nebula put forward in § 4. In nature the truth will lie somewhere between these
two hypotheses, and it is by no means easy to decide which of the two gives the
better representation of an actual nebula. We shall, however, be within the limits
of safety if we assert of an actual nebula only those propositions which are true of
both our ideal nebulze.

§ 38. We may accordingly sum up as follows :—

(i.) A nebula at rest and in absolute equilibrium in a spherical configuration will
always be stable.

(i.) Such a nebula may become unstable as soon as the temperature-lag is taken
into account.

(iii.) There will be a linear series of configurations of relative equilibrium of a
rotating nebula, starting from a non-rotating spherical nebula (supposed
stable), and such that the configuration is symmetrical about the axis of
rotation.  This linear series corresponds to the series of Maclaurin
spheroids.

(iv.) The first point of bifurcation on this series occurs for a comparatively small
value of the angular rotation.

(v.) The second series through this point is one in which the configurations
possess only two planes of symmetry. Initially the configuration is such
that the equations to the surfaces of equal density contain only terms in
the first harmonic in addition to those required by the angular rotation.

(vi.) There is a linear series which corresponds to the series of Jacobian ellipsoids,
each configuration possessing three planes of symmetry. The point of
bifurcation at which this series meets the series mentioned in (iii.) is a point
at which the angular rotation is much larger than that at the point of
bifurcation mentioned in (iv.).

(vii.) This latter linear series appears to be always unstable.
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Tar UNSYMMETRICAL CONTIGURATIONS OF A NEBULA.
The Second Series of Equilibrium Configurations.

§39. Let us now try to examine the second series of equilibrium configurations,
which, as we have seen, is a series of stable configurations replacing the series of
Jacobian ellipsoids. In this way we shall be able to gather some evidence with a
view to forming a judgment whether the behaviour of the nebula after leaving the
symmetrical configuration is such as is required by the nebular hypothesis.

Let us suppose, in the first instance, that the symmetrical configuration from which
this series starts is one in which there is no rotation, so that the configuration is one
of perfect spherical symmetry. If the nebula is one in which cooling takes place
very slowly, the configuration of the nebula will always be very approximately an
equilibrium configuration. This configuration will be one of the spherically
symmetrical series until the first point of bifurcation is reached ; after this the
configuration will change so as to move along the other series, which passes through
this point.

Now we have already found the manner in which the configuration first diverges
from spherical symmetry ; in other words, we have a knowledge of the unsymmetrical
series in the immediate neighbourhood of the point of bifurcation. If then, we can,
by some method of continued approximation, obtain a more extended knowledge of
this series of configurations, we shall be able to trace the motion of a nebula which
is cooling with infinite slowness, and in this way form some idea of the motion to be
expected in the more general case.

Let us assume, as a general form for the * series ” now under discussion,

p=py+ piPr+ poPy+ psPs 4. Coee e (1),

where P, is the zonal harmonic of order s, and p,, p;, p, are functions of » and of
some parameter «. This parameter determines the position of any particular
configuration in the series. We shall suppose that at the point of bifurcation ¢ = 0,
and we then know that when a is very small the limiting form of p is

p=py+ p.Pr
In the notation which has been in use throughout the paper, we find that
corresponding to the deunsity distribution given by equation (72) the gravitational
potential at the point 7, 6 is

V=6+06P +06P,+6P,+ ... . . . . . (116),
where
4 1 b 7 P By py .
0, :!s —+ i {/'"’*'JRJ sl oy JAT i } Coe e (1 | 7).

VOL. CXCIX.—A. ¢



42 MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA.
The functions p,, p, . ... are to be determined from the condition that V and p
shall satisfy the three equations of equilibrium, which are of the form

1ds _dV

p do — dn’

An Isothermal Nebula.

§40. Let us suppose, for the sake of simplicity, that the nebula is at uniform
temperature, and extends from» = 0 to 7 = o. We have already seen (equation (77))
that the critical vibration for a nebula initially isothermal, is one in which the nebula
remains isothermal. Hence it follows that if a nebula changes its configuration
through coming to a point of bifurcation, when moving on a series of isothermal
and spherical configurations, then the new series will also be one in which the
equilibrium is isothermal.

We may now write = = kp, where « is a constant, and the three equations of
equilibrium become equivalent to the single equation,

klogp=V +c,
or '
Ve

p=erc . . . . . . . . . . (18)

Now the series in question is, as we have seen, approximately represented, near to
the point of bifurcation, by taking only two terms of (115), and consequently only
two terms of (116). In this case equation (118) becomes :

b, + ¢
K

{1+%P1+;~»<%P1>2+...} S L. (119),

po+ pilPr=c¢
[Equating coefficients, we find that p, is given by the equation
O+ e
Po=2¢ ",
the same equation as in the case of perfect spherical symmetry. Also p, is given by
the equation _
p
Pr= ,: 0.
It will be easily verified that this equation is exactly equivalent to our former

equation (38). The equation contains an arbitrary multiplier in its solution. This
may be taken to be @, the parameter of the series, so that we may write

py = oy,
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where o 1s a completely determined function of ». Thus, as far as a, the solution is

seen to be 4
p = py + ao P

We shall now show that, as far as a? the solution is

p=py+ ?ogy + ac\ Py 4+ P,y . . . 0 0L (120)

The substitution of this in equation (118) leads to

po + oy + ao Py + aleyPy

bpte

= ¢ {1 +f‘f1Pl+%<af1Pl>2+ . -yf‘lgjéPg ... +f7’f2§?°? + }

where ¢, stands in the same relation to o, as does 6, to p;. The right-hand member
of this equation is equal to

bote

L {1 + %cﬂd)f + “oe _‘,‘,ifi P, + <‘fg’2+ %aiﬁq Pt '}’

-
K~ K

in which the unwritten terms are of degree at least equal to 8 in «.
Neglecting a® the equation is satisfied if

_ ﬁ':—c . ld’lz ¢02 121
Po=¢ ", 0o = pg 6';5""“’; coe e (12,
=00 L (22),

co=PE P (129),

These equations determine oy, and o, uniquely.
It is obvious that this method is capable of indefinite extension, and that the
general form of configuration in the series will be given by

p=py + oo + oy +. .. 4 (a0 + dPoyg + Aoy + .. )P
+ (020, + afoy, + . . )Py (@Poy + Ao+ L. )Pyt ke . (124),
§ 41. Let us examine in greater detail the solution as far as a2 this being given by
equation (115). The important question, as will be seen later, is the determination

of the sign of o, We therefore pass at once to the consideration of equation (123).
‘Written out in full, this becomes '

-4 L") g0
oy = —:I?Q {7 !‘0 o, dr’ + 7'2[
G 2

7 ’ Q
T9 7.0 1 Poy®
o) gy
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This equation may be transformed in the same way as equation (39). If we
write

kr [ Pody®
D] 1 PO
y=p T e )

we find that the above equation is equivalent to (c¢f. equations (47), (48), (49),
(54), (56))
Py Oy 4oy = e { 1 - /r(ﬁ‘“} oo (12D),

dr? 72 K

together with the two equations

1 d
[Q (Z,)“ (y)g)] ] =0 . R . ‘ . . . . (].26),

© ( 3 i
[¢Uf,"(y71~o)J‘_ozz 0 . .« . . . . .. (127)

dr s
Writing
W= 2mpyi ,
K
equation (119) becomes
;;;g ~ (6 —2u) = — ’"’j" S (128

Referring to the table of values for w«, which will be found on p. 15 of
Professor DARWIN'S paper, it appears that u increases from a zero value at the origin
up to a maximum value of about 1'66; it then decreases to a minimum of about 8,
and after this increases to 1, its value at infinity, Thus the factor 6 — 2u has a range
of values from 6 to about 23. '

Now the solution of

L’%——%n(n-{—l):—-7’;:’;'[;1' R ¢ 1))

dr® 7
is easily found to be
dmr 1 ! &)leg_ T2 o i) [w p,"(j)] l PN N oa=u n+1 Q
Y= é?l;? {’;721"] [o 2’ ! dr + » oyl di + (_/1,7 + CQ' l . (1')0)’
in which C, and C, are constants of integration, which may at once be put equal to
zero, if 1 is positive, and if ¥ is to satisfy conditions (126) and (127).
Comparing (128) with (129), we see that if w had a constant value u, at every

point of the nebula, the value of y would be given by equation (130), in which C), C,
would be put equal to zero, and n would be the positive root of

n(n+1)=6— 2u,,

provided only that 6 — 2u, were positive.



MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 45

For the range of values for u, from u, = 0 to 1, == 166, the value of n would have
a range of values from 2 to 1'2. Thus the form of solution is materially the same for
all of these values of u;. It will be seen without difficulty that the solution of (128),
in which u has not a constant value, but varies over the range from 0 to 1°66 as =
varies, will be such that the graph expressing y as a function of » will present the
same features as are common to the graphs giyen by equation (130) for ranges of n
from 2 to 1°2.

Now the value of  given by equation (130) is positive for all values of #, hence we
infer that the solution of (128) is such that # is positive for all values of . We
therefore have, for all values of »,

- -+ a positive quantity,

oy = % &:j;)‘lg
so that o, is positive for all values of 7.

§ 42. We therefore see that the initial motion, in which # and A are each
proportional to the first harmonie, will first break down owing to the introduction of
terms involving the second harmonic. The sign of these terms is such that there is,
in all the shells of which the nebula is composed, a diminution of density in the
equatorial regions, and a condensation at both poles, which must be added to that
given by the terms involving the first harmonic.

The nature of this motion will become clearer upon a reference to fig. 8. This
figure consists of the four curves®

r = d, r = a, + o,P,
r = a,+ a,P; + a,P, r = a, + o' ;;P; + o',P,,

and these may be supposed to represent curves of equal density in the three stages.
Tt is easy to see that of the pear-shaped surfaces of equal density, the equations of
which contain the two first harmonics, some will be turned in one direction, and some
in the other. For if they were all turned in the same direction the centre of gravity
could no longer remain at the centre of co-ordinates. Thus, if the narrow ends of
these pear-shaped figures point in one direction at infinity, we must, as we go
inwards, come to a place at which they have the transition shape, namely, ellipsoids
of revolution, and after this they will point in the opposite direction.

It appears, therefore, that the initial motion is such as to suggest the ultimate
division of the nebula into two parts, this division being effected by the outer layers
condensing about one radius of the nebula, so as to leave room for the ejection of a

* The particular values for which the curves are drawn are in the ratio a, = 11, ¢y = 2, a3 = 5, as = 2,
«nw=1,4as=4. Thus the equation of the last curves are in polar co-ordinates,

= ;’; (10 + 5 cos 0 + 3 cos?6), r= ﬁ (9 + 7 cos 0 + 6 cos? 0),
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central nucleus in the direction of the opposite radius. Whether or not actual
separation takes place would probably depend on the amount of the angular velocity.

It is of interest to compare the result just arrived at, with the corresponding
result found by Poincarg for the motion when an ellipsoid of Jacont first becomes
unstable.®  This is described as follows :—

“La plus grande portion de la mati¢re semble se rapprocher de la forme sphérique,
tandis que la plus petite portion de cette méme matitre sort de lellipsoide par
I'extremité du grand axe, comme si elle voulait se séparer de la masse principale.”

Thus, although the initial motions are, since they start from different configurations,
necessarily different, yet it would seem as if the final result was very much the same
in the two cases. In either case we have a diminution of matter in the equatorial
regions, suggesting the ultimate division of the mass into two, and in each case these

T

4—— T ——
—
S S~ \

two masses are of unequal size, a result which could hardly have heen foreseen
without analysis.

§ 43. If the rate of cooling of a nebula is appreciable, the motion will not be along
a “series” of equilibrium configurations. The value of p, the frequency which is
nearest to instability, will be changing at a finite rate, and may run to some distance
beyond the zero value, before the deviation of the nebula from the spherical shape is
sufficient to invalidate the analysis of our paper. In this case we can imagine the
first unstable vibration, that for which p = 0, being overtaken by other unstable
vibrations of greater and greater frequency, the corresponding velocity of divergence

* ¢ Acta Mathematica,” vol. 7, p. 347.



MR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 47

from spherical symmetry becoming continually greater. It is therefore quite
conceivable that the motion may become adiabatic at an early stage, and it is possible
that it may be better imagined as a collapse or explosion, rather than as a gradual
slipping from a spherical state of equilibrium into and through a series of
unsymmetrical states of equilibrium.

But an examination of the physical character of the motion will show that in this
extreme case, as also in any intermediate case, the motion must be, in its essentials,
the same as that which has been found for the other extreme case, namely, that of
infinitely slow cooling and perfect thermal equilibrium. 1In the spherical state, the
outermost layers of gas may be regarded as stretched out in opposition to their
gravitational attractions, being maintained in this state by the elasticity of the gas.
The balance between these two agencies (which is, speaking loosely, measured by the
stability function, u,,) must be supposed to be continually changing, and instability
always results from the same cause, namely, that the elasticity of these outer layers
becomes inadequate to resist the gravitational tendency to collapse. In every case
the outer layers concentrate about a single radius of the nebula, the axis of harmonics
(0 =0 in equation (72)) and so increase the pressure along this radius, while
decreasing that along the opposite radius (§ = #). This pressure acting upon the
inner layers of gas and the core sets them in motion, and in this way we have the
tendency to separation into two nebulze.

A Nebula in < Isothermal-adiabatic ” Equilibrium.

§ 44. A nebula which consists of an isothermal nucleus with a layer in convective
equilibrium above it, is said to be in *isothermal-adiabatic” equilibrium. At the
surface at which the law changes from the adiabatic to the isothermal, the quantities
=, T and p must all be continuous.

The isothermal part is capable of executing a vibration of frequency p = 0 while
remaining in isothermal equilibrium throughout, provided the forces acting upon it
from the adiabatic part are:the same as would act if the adiabatic part were replaced
by an isothermal part in such a way that the whole made up an infinite isothermal
nebula. If the nebula is rotating, the amplitude of vibration of the infinite nebula
will vanish at infinity proportionally to some inverse power of #, this power increasing
with the rotation. For sufficiently large rotations, the vibrations may be regarded
as inappreciable except over the original isothermal nucleus, so that the vibration is
approximately unaltered when the outer layers are again replaced by layers in
convective equilibrium.

We see, therefore, that an ¢ isothermal-adiabatic ” nebula may become unstable, for
sufficiently large rotations, through a vibration of order n = 1. No attempt is made
to obtain any numerical results. We can, however, follow up the subsequent motion
in the same way as in the case of an isothermal nebula.
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Over the part of the nebula which is in adiabatic equilibrium, the relation between
density and pressure is
w = cp’,

where ¢ 1s a constant, so that the equations of' equilibrium become

g dp _adVv
P g T &e.,

and are therefore equivalent to the single equation

v——1”yl:V"V

where V is the potential of the outer boundary of the nebula. This takes the form
-1 Po ! 2 P

— 1) p ‘
+ 1.>p013+...},

or,

) _aed [ (v =Dy =2) (o)
= Vot 00k 60 + . = T2 {L+ ; <p0>

+l =02+ (=) TR (P

It is obvious that equation (124) again gives the general form of solution, and that,

as far as @ the equations are (¢f. equations 121, 123
3 5

— V. = Do
by — Vo ="

b, = cyp, ! <Z;> e (18),

{0+‘ >)(\';1>2}. S (1s8),
é oy (y —2)

o .
P— e e e, 134).
0 6 <Po) ( ? )

(131),

b

H

Writing « for cyp,'™!, we see that equations (132) and (133) may be written

N (F))
Poda o®

— r I S . e
g, = p —‘ 3 (u ’}/) (].e)()).
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These are equations similar to (122) and (123); the last term in (136) is different
from the last term in (123), but both terms agree in being invariably positive. Hence
it appears that the question of the sign of o, turns, as in § 87, upon the sign of the
factor (6 — 2u). We can no longer actually evaluate this factor, as in § 87, but it
seems to be safe to infer from analogy that it will be positive at every point, and this
in turn shows that o, must be positive at every point. Hence it appears probable
that the motion will be that described in § 38.

Rotating Nebula.

§ 45. The equations of an unsymmetrical series starting from a symmetrical
configuration in which there is a finite amount of rotation would be extremely
complicated, and no attempt to handle them is made in this paper. The correction
for a small rotation will clearly consist merely of an increase in the terms containing
the second harmonic, so that the general shape of the curves will be similar to that
of the last two curves of fig. 3.

Little difficulty will be experienced in imagining the shape of curves appropriate
to larger rotations.

Prosrems or Cosmic EvoruTtion.

Infinite Space filled with Matter.

§ 46. A limiting solution of the equations of equilibrium (corresponding to A = o,
B =  in equation (114)) gives a nebula in which the density is constant every-
where. This solution may be supposed to represent infinite space filled with matter
distributed at random. If space has no boundary there is presumably no need to
satisfy a boundary-equation at infinity, so that p may have any valte; if, however,
this equation must be satisfied the only solution is p = 0.

Let us consider the former case. Space is filled with a medium of mean density p
and of mean temperature T. Since the space under consideration is infinite, we may
measure linear distances on any scale we please, and, by taking this scale sufficiently
great, we can cause all irregularities in density and temperature to disappear. We
may, therefore, suppose at once that the density and temperature have the constant
values p and T.

The equations of motion for small displacements referred to rectangular axes are,
in the old notation (cf. § 6), since V, and =, are constants,

PE AV 1 de
g~ dx py dz’

&e., . . . . . . . (137),

or, operating with d/dwx, d/dy, cl/dz, and adding
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APPA 1
A oy ey v
=V = Vel (139)
Since V' is the gravitational potential of a distribution of density — Ap (¢f. § 6), we
have
VWV = datp, . . . . . . . . . (139),

while if we suppose, for the sake of simplicity, that the motion is adiabatic, so that
the ratio of pressure to density changes at a constant rate «, we have (¢f. equation

(3). p. 5)
Vig' = kV%' = — kp,V?A.

Hence equation (138) becomes

2A o -
;Z—ﬁ—élprmKVAmO. Coo oo (140)

The simplest solution of this is of the form

Az-};—a‘“)‘l"") Co o (L4,

i
where
2 ’
g ="t (142),
and the general solution can be built up by superposition of such solutions.
Now solution (141) gives A = 0 at infinity, provided ¢ is real, and therefore
provided p* + 4mp is positive, a condition which admits of p being imaginary.
There is therefore a possible motion, which consists of a concentration of matter
about some point, the amount of this concentration vanishing at infinity, and the
amount at any point increasing, in the initial stages, exponentially with the time.
We conclude, therefore, that a uniform distribution in space will be unstable,
independently of the mean temperature or density of this distribution.®

The Evolution of Nebulw.

§ 47. We can also see that a distribution of matter which is symmetrical about a
single point will be equally unstable. For, if this distribution of matter were perfectly

* An interesting field of speculation is opened by regarding the stars themselves as molecules of a
quasi-gas. If space were Euclidean and unbounded, there would be no objection to this procedure, and
we should be led to the conclusion that the matter of the universe must become more and more concen-
trated in the course of time. If space is non-Euclidean, this concentration might reach a limit as soon as
the coarsegrainedness of the structure attained a value so great that the distance between individual
units became comparable with the radii of curvature of space. In any case, it may reach a limit as soon
as an appreciable fraction of the space in question becomes occupied by matter.
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homogeneous, the whole mass of matter would form a spherical nebula of literally
infinite extent, and would therefore be in neutral equilibrium. The introduction of
even the smallest irregularities into this structure is equivalent to the application ot
an external field of force. This, as has already been seen, will destroy the spherical
symmetry, and it can easily be seen that the motion from spherical symmetry is such
as to lead to a concentration of matter about points of maximum density.

It appears, therefore, that the configuration which will naturally be assumed by an
infinite mass of matter in the gaseous or meteoritic state consists of a number of
nebule (i.c., clusters round points of maximum density). We may either suppose
the outer regions of these nebule to overlap, each nebula satisfying the gas-equations
by being of infinite extent, or we may suppose the nebulze to be distinct and of finite
size, the interstices being filled by meteorites or other matter, which by continual
bombardment upon the surfaces of the nebule supply the pressure which is required
at these surfaces by the equations of equilibrium.

§ 48. What, we may inquire, will determine the linear scale upon which these
nebule are formed ? Three quantities only can be concerned: y the gravitational
constant, p the mean density, and AT the mean elasticity. Now these quantities
can combine in only one way so as to form a length, namely, through the expression

NI
/\/&P ,

of which the dimensions will be readily verified to be unity in length, and zero in
mass and time. We conclude, then, that the distance between adjacent nebulse will
be comparable with the above expression.

Now the value of y is 65 X 1079, and if we assume the primitive temperature
to be comparable with 1000° (absolute) we may take AT = 10° (corresponding
accurately to an absolute temperature of 350° for air, 2800° for hydrogen). If we
take the sun’s diameter as a temporary unit of length, the earth’s orbit is (roughly)
of diameter 200. If we suppose the fixed stars to be at an average parallactic
distance of 0°5” apart, measured with respect to the earth’s orbit, we find for their
mean distance apart, about 4 X 107 sun’s radii. ~ The density of the sun being,
in C.G.S. units, roughly equal to unity, we may, to the best of our knowledge,
suppose the mean density of the primitive distribution of matter to be about
(4 x 107)73, or say 107%. Substituting these values for y, NT and p, we find as the
scale of length a quantity of the order ot 10Y® centims. The distance which
corresponds to a parallax of 0'5” would be about 10 centims. It will therefore be

seen that we are dealing with distances which are of the astronomical order of
magnitude.

" 2
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The Evolution of Planetary Systems.

- §49. Let us now regard a single centre, together with the matter collected round
it, as the spherical nebula which is the subject of discussion. On account of the
way in which it has been formed, this nebula will, in general, be endowed with
a certain amount of angular momentum. We have seen that a primitive nebula of
this kind may be supposed, under certain conditions, to become unstable. We have
also seen that the motion, when the nebula becomes unstable, is such as to strongly
suggest the ejection of a satellite.

As a nebula cools the rotation increases, owing to the contraction of the nebula,
and Q also increases. Thus the quantity Q?/3M\T°, which measures the rotational
tendency to instability, has a double cause of increase ; firstly owing to the increase
in Q, and secondly owing to the decrease in T. We can accordingly imagine the
primitive nebula becoming unstable time after time, throwing off' a satellite each time.

In the usually accepted form of the nebular hypothesis, the rotation is supposed to
be the sole cause of instability, so that the system resulting from a single nebula
ought theoretically to be entirely symmetrical about an axis. On the view of the
present paper, there is no reason for expecting this symmetry. For large rotations
of the primitive nebula, the configuration of the resultant planetary system will
approximate to perfect symmetry, but for small rotations, a slight irregularity
occurring at the critical moment, at a point out of the equatorial plane, may produce
a satellite of which the orbit is far removed from the equatorial plane.

In conclusion, two particular cases of *irregularities” may be referred to. If the
nebula is penetrated by a wandering meteorite, at a moment at which it is close to a
state of instability, the presence of the meteorite will constitute an irregularity, and
may easily result in the formation of a satellite. And if a quasi-tide is raised in the
nebula by the presence of a distant mass, the same result may be produced. In the
former case, the plane of the satellite would, if the rotation is sufﬁciéntly small,
be largely determined by the path of the meteorite ; in the second case, by the
position (or path) of the attracting mass. It would not, in either case, depend much
upon the axis of rotation of the nebula.

CoONCLUSION,

§ 50. To sum up, it appears that the behaviour of a gaseous nebula differs in
at least two important respects from that of an incompressible liquid. In the first
place, it differs as regards the amount of rotation which is required to produce
instability, and, in the second place, it differs as regards the disposition of the orbits
of the planets which will be formed out of the primitive nebula. It will be noticed
that no definite numerical results have been obtained; my aim has been to obtain
yualitative rather than quantitative results, so as to show, if possible, that the
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results to be expected for a gaseous nebula are of so much more general a kind than
those usually inferred from the analogy of a liquid mass, that no difficulty need be
experienced in referring existent planetary systems to a nebular or meteoritic origin,
on the ground that the configurations of these systems are not such as could have
originated out of a rotating mass of liquid.

In conclusion, I wish to express my indebtedness to Professor DARWIN for much
assistance which I have received from him throughout the course of my work,




