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The partial differential equations governing two-dimensional thermosolutal convec- 
tion in a Boussinesq fluid with free boundary conditions have been solved numerically 
in a regime where oscillatory solutions can be found. A systematic study of the 
transition from nonlinear periodic oscillations to temporal chaos has revealed 
sequences of period-doubling bifurcations. Overstability occurs if the ratio of the 
solutal to the thermal diffusivity 7 < 1 and the solutal Rayleigh number R,  is 
sufficiently large. Solutions have been obtained for two representative values of 7. 
For 7 = 0.316, R, = lo4, symmetrical oscillations undergo a bifurcation to asym- 
metry, followed by a cascade of period-doubling bifurcations leading to aperiodicity, 
as the thermal Rayleigh number R ,  is increased. At  higher values of R,, the 
bifurcation sequence is repeated in reverse, restoring simple periodic solutions. As R ,  
is further increased more period-doubling cascades, followed by chaos, can be 
identified. Within the chaotic regions there are narrow periodic windows, and 
multiple branches of oscillatory solutions coexist. Eventually the oscillatory branch 
ends and only steady solutions can be found. The development of chaos has been 
investigated for T = 0.1 by varying R ,  for several different values of R,. When R, 
is sufficiently small there are periodic solutions whose period becomes infinite at  the 
end of the oscillatory branch. As R, is increased, chaos appears in the neighbourhood 
of these heteroclinic orbits. A t  higher values of R,, chaos is found for a broader range 
in R,. A truncated fifth-order model suggests that the appearance of chaos is 
associated with heteroclinic bifurcations. 

1. Introduction 
The last decade has seen great progress in understanding the complicated dynamics 

of nonlinear systems. Some of the most striking advances relate to the transition from 
periodic to aperiodic (or chaotic) oscillations. To describe these results, let us consider 
a lightly damped system, acted upon by a spring, which oscillates with gradually 
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decaying amplitude about a stable equilibrium position. Suppose that the spring is 
opposed by a weak destabilizing force. Nothing significant happens if both forces are 
in phase but if there is a phase lag between the destabilizing and stabilizing forces the 
system may be overstable, so that small oscillations grow exponentially with time. 
Their growth must ultimately be limited by nonlinear effects and periodic finite- 
amplitude oscillations will typically ensue. If the destabilizing force is gradually 
increased, these oscillations will increase in amplitude and become more obviously 
nonlinear. Eventually they may give way to chaotic behaviour. Two important 
questions then arise : by what route does the transition proceed ? and what mechanism 
is responsible for the appearance of chaos Z 

There are only a limited number of routes to  chaos (Eckmann 1981). Of these, the 
most likely is by a sequence of bifurcations at  each of which the period doubles, 
forming a cascade with an accumulation point (Lanford 1982). Beyond that point 
the oscillations are typically aperiodic, though there are narrow windows where 
periodic behaviour can be recovered. This intricate pattern of bifurcations has been 
thoroughly investigated for one-dimensional maps (May 1976 ; Collet & Eckmann 
1980) and has been identified in various experiments. Solutions of ordinary differential 
equations also exhibit period-doubling bifurcations (e.g. Sparrow 1982) and, as we 
shall see, they can be found for partial differential equations too. 

Cascades of period-doubling bifurcations are associated with transitions to chaos 
but do not in themselves explain why chaos is produced. In simple systems of 
differential equations chaotic behaviour is typically associated with orbits of infinite 
period linking one or more saddle points. A trajectory connecting the unstable and 
stable manifolds of the same saddle point is called a homoclinic orbit; one that 
connects two different saddle points is called heteroclinic. As a control parameter is 
increased there may, in certain circumstances, be homoclinic or heteroclinic bifurca- 
tions that are responsible for producing chaos (Guckenheimer & Holmes 1983). In 
the Lorenz system there is a saddle point with real eigenvalues at the origin in phase 
space, and a symmetrical pair of homoclinic orbits leads first to ‘preturbulence’ and 
then to the appearance of a strange attractor (Sparrow 1982). In other systems there 
is a saddle-focus and the homoclinic orbit emerges on the eigenvector corresponding 
to a real positive eigenvalue but returns to spiral slowly in. Shil’nikov (1965) showed 
that such a homoclinic bifurcation could give rise to chaos. 

These bifurcations are not just a mathematical curiosity. Experiments on convection 
in liquid helium (Libchaber & Maurer 1981), mercury (Libchaber, Laroche & Fauve 
1982; Libchaber, Fauve & Laroche 1983) and even water (Gollub & Benson 1980; 
Giglio, Musazzi & Perini 1981) have demonstrated that period doubling occurs in real 
fluid systems. It follows that it must be possible to find period doubling, followed 
by chaos, in solutions of the Navier-Stokes equations. In this paper we consider a 
classic fluid dynamics1 problem that exhibits oscillatory behaviour - double-diffusive 
convection - and examine the transition to chaos. Our aim is to analyse the behaviour 
found in numerical experiments and, by judicious use of simple models, to explain 
why chaos occurs. This problem provided the first example of period-doubling in 
solutions of partial differential equations and also shows how chaos is related to a 
heteroclinic bifurcation. A preliminary account of some of our results was given by 
Moore et al. (1983). 

Double-diffusive phenomena have received considerable attention (e.g. Turner 
1973; Huppert & Turner 1981). We consider convection in a fluid layer containing 
a bottom-heavy distribution of a solute, such as salt, that is heated from below. The 
stabilizing solute gradient acts as a restoring spring, supporting internal gravity 
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waves, while the thermal stratification provides a destabilizing force. If the solute 
gradient is sufficiently strong, oscillatory convection can set in even when the mean 
density decreases upwards (Stern 1960). In  order to produce the necessary phase lag 
between stabilizing and destabilizing forces it is, however, necessary that the thermal 
diffusivity , K,, should be greater than the solutal diffusivity, K,. Finite-amplitude 
oscillations have indeed been found in experiments on thermosolutal convection 
(Shirtcliffe 1967, 1969) but at larger values of the thermal Rayleigh number R ,  
oscillatory convection gives way to steady overturning motion, and the system 
typically breaks up into a series of convective layers separated by diffusive interfaces 
(e.g. Turner 1968; Huppert & Linden 1979). Oscillatory convection also occurs in 
several related problems, where motion is driven by the Soret effect (e.g. Schechter, 
Velarde & Platten 1974; Knobloch 1980) or constrained by the presence of rotation 
or magnetic fields (e.g. Chandrasekhar 1961 ; Busse 1978; Proctor & Weiss 1982). 

Two-dimensional thermosolutal convection between free boundaries was studied 
numerically by Veronis (1968) and by Huppert & Moore (1976; see also Huppert 
1977) ; oscillations between rigid boundaries have been reported by Chang, Korpela 
& Lee (1982). Huppert & Moore observed complex behaviour associated with the 
transition from oscillatory to steady convection. They found that for large enough 
values of the solutal Rayleigh number, R, (which measures the stabilizing effect of 
the solute gradient), the oscillations underwent a bifurcation to asymmetry (with 
unequal clockwise and anticlockwise motion) as R, was increased. For yet larger 
values of R, they found aperiodic oscillations, which eventually gave way to steady 
overturning motion. 

In order to ascertain the origin of this behaviour it is useful to begin with simpler 
systems of nonlinear differential equations. Moore & Spiegel (1966 ; Baker, Moore & 
Spiegel 1971) constructed a nonlinear oscillator that served as a model of overstable 
thermal convection. This third-order system exhibits a transition from periodic to 
aperiodic oscillations which turns out to be associated with period-doubling bifurca- 
tions (Marzec & Spiegell980) and the presence of a heteroclinic orbit (Spiegell985). 
Da Costa, Knobloch & Weiss (1981) studied a model of two-dimensional thermosolutal 
convection, consisting of five ordinary differential equations, that was originally 
suggested by Veronis (1965). This model is an exact consequence of expanding the 
partial differential equations to second order in the amplitude of the motion. Thus 
the linear and small-amplitude behaviour is identical with that of the partial 
differential equations. In particular, Knobloch & Proctor (1981) showed that, in a 
range of values of R, for which the oscillation amplitude remains small, the period 
of the oscillation tends to infinity with increasing R, before the oscillations disappear. 
This behaviour is associated with the appearance of a heteroclinic orbit; thus the 
branch of oscillatory solutions terminates on a branch of unstable steady solutions 
in an amplitude-Rayleigh number diagram. Such behaviour has been verified 
numerically for the fifth-order model. At  larger values of R, the oscillations increase 
in amplitude and Da Costa et al. (1981) found a bifurcation to asymmetry followed 
by a cascade of period-doubling bifurcations, with aperiodic oscillations beyond the 
accumulation point. Typically the sequence of bifurcations would then be repeated 
in reverse forming a ‘bubble’ (Knobloch & Weiss 1981) before the oscillatory 
solutions disappeared. A detailed investigation of the analogous fifth-order model of 
magnetoconvection revealed an intricate sequence of semiperiodic bands interspersed 
with periodic windows beyond the accumulation point of the initial cascade, and 
confirmed that the oscillatory branch terminated with a heteroclinic orbit (Knobloch 
& Weiss 1983; Bernoff 1985). Moreover, the appearance of chaos is associated with 
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a heteroclinic connection between saddle foci with eigenvalues satisfying Shil’nikov’s 
(1965) inequality. In double-diffusive convection, chaos is apparently caused by 
heteroclinic bifurcations. 

The fifth-order model provides a nice example of the applications of modern 
bifurcation theory (Guckenheimer & Holmes 1983) and these results encouraged us 
to seek similar behaviour in solutions of the full partial differential equations. In this 
paper we present numerical evidence for an initial bifurcation to asymmetry, followed 
by period-doubling, semiperiodic bands and periodic windows. The bubble structure 
reappears and is associated with the heteroclinic bifurcation that seems to be 
responsible for producing chaos. This complicated web could scarcely have been 
unravelled without prior study of the fifth-order system. 

Aperiodic oscillations have been seen in numerical solutions of various systems of 
partial differential equations, including studies of two- and three-dimensional 
Rayleigh-BBnard convection (McLaughlin & Orszag 1982 ; Curry, Herring, Loncaric 
& Orszag 1984) and of convection in porous media (Schubert & Straus 1982). Such 
oscillations are readily found in numerical simulations of three-dimensional 
convection, though the origins of chaos are usually unclear. One route to chaos that 
has been much discussed is by the breakdown of triply periodic motion, corresponding 
to the appearance of a strange attractor after three successive Hopf (i.e. oscillatory) 
bifurcations (Ruelle & Takens 1971; Newhouse, Ruelle & Takens 1978; Eckmann 
1981). Although quasi-periodic (i.e. multiply periodic) behaviour with three or more 
incommensurate frequencies is structurally unstable (Newhouse et al. 1978) the 
perturbations of the system required to produce chaotic motion are apparently very 
special (Arnol’d 1983) and there are several examples of stable triply or quadruply 
periodic motion (Gollub & Benson 1980; Grebogi, Ot t  & Yorke 1983, 1985; Tavakol 
& Tworkowski 1984a, b ) .  We suspect that transitions to chaos in three-dimensional 
convection, following one or more Hopf bifurcations, are generally associated with 
cascades of period-doubling bifurcations (preceded, where necessary, by frequency 
locking to give a periodic orbit). To locate such a cascade requires a very detailed 
search and in three-dimensional computations this is difficult to carry out. 

In two-dimensional problems i t  is, however, feasible to conduct an intensive search 
and to identify both the route to chaos and the mechanism responsible for causing 
it. The transitions to chaos that we shall describe here all occur by period doubling. 
With one exception, chaos appears after a single Hopf bifurcation, followed by a 
cascade of period-doubling bifurcations ; in a single case (with rather extreme 
parameter values) whose accuracy is not yet fully established there are two Hopf 
bifurcations leading to doubly periodic motion (so that trajectories lie on a two torus 
in phase space), followed by frequency locking and a period-doubling cascade. These 
cascades are associated with a global bifurcation that produces a heteroclinic orbit 
connecting two saddle foci. It can be shown that, under certain conditions, such a 
bifurcation must be accompanied by infinitely many (possibly coexisting) period- 
doubling cascades, leading to intervals of chaos (Glendinning & Sparrow 1984; 
Gaspard, Kapral & Nicolis 1984; ArnBodo et al. 1985b). This mechanism, due t o  
Shil’nikov (1965; Guckenheimer & Holmes 1983), is known to operate near certain 
multiple bifurcations in systems described by partial differential equations (Gucken- 
heimer 1981; Arndodo et al. 1985b). Indeed, it has been demonstrated that this 
mechanism can generate chaos arbitrarily close to the initial bifurcation for thermo- 
solutal convection in a rotating system (ArnBodo, Coullet & Spiegel 1985a ; ArnBodo 
& Thual 1985). 

Our paper is organized as follows. In $2 we survey the whole problem: after 
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summarizing known analytical and numerical results we present new computations 
which show that the transition to chaos does indeed take place via a cascade of 
period-doubling bifurcations ; we also indicate how this behaviour relates to the 
fifth-order model. We then describe, in $ 3,  a detailed investigation of successive 
bifurcations along the branch of oscillatory solutions. The results are illustrated by 
projecting trajectories onto suitable phase planes and constructing associated return 
maps and by obtaining frequency power spectra. We have located several bubbles 
with chaotic behaviour interspersed with periodic windows and we argue that this 
behaviour is associated with a heteroclinic bifurcation. In $4  we explore the 
development of chaos on the oscillatory branch as R, is increased. Finally, in $5,  we 
assess the significance and limitations of our study and suggest directions for future 
research. 

2. Survey of the problem 
2.1. The governing equations 

Two-dimensional thermosolutal convection in a layer of fluid, confined between 
infinite plane horizontal boundaries maintained at constant temperature and solute 
concentration, is described, in the Boussinesq approximation, by the non-dimensional 
equations (Huppert & Moore 1976) 

1 
- [a, vzy+J( y, v2q]  = RT a, 8 - R s  a,wv4y,  
a ( 1 )  

a,s+~(~,e) =a,lu+vw, ( 2 )  

a,z+J(y,:) = a, Y + ~ V ~ Z .  ( 3 )  

Here V(z, z, t )  is the non-dimensionalized stream function, such that the velocity 
(u, 0, w) = ( -8, Y,  0, a, !P), and 8(z, z, t ) ,  C(z, z, t )  denote respectively the departures 
of the temperature T and solute concentration S from their linear profiles present 
in the non-convecting state : 

T-To = A T ( l - z + @ ) ,  S-So = A S ( l - Z + Z ) .  ( 4 )  

Distances are measured in terms of the depth h of the convecting layer, and time in 
terms of the thermal conduction time h2/KT. The four dimensionless parameters 
appearing in (1)-(3) are, respectively, the thermal and solutal Rayleigh numbers 

ga AT h3 g p  AS h3 
R, = , R , =  

K T  V KT V 

and the two Prandtl numbers 

where v is the viscous diffusivity. In  ( 5 ) ,  a = - ( l / p )  (ap/aT)I, andp = (l/p) (ap/aS)IT, 
the acceleration due to gravity is ( O , O ,  - g ) ,  and AT, AS are, respectively, the 
temperature and solute differences imposed across the layer, with the lower boundary 
hotter and ‘saltier’ than the upper boundary. Finally, the symbol J ( f ,  g )  denotes the 
Jacobian a(f, g ) / a ( s ,  z).  The density contrast across the layer is measured by the 
stability parameter (or density anomaly ratio) A = p A S / a A T  = R,/R,. If the 
initial density increases with depth, then A > 1 .  

14-2 
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We consider convection cells of unit height and width 2A, each occupied by two 
rolls of width A, with opposite senses of motion. Then the system is periodic in x, with 
period 2A, and we need only solve the equations in the region (0 6 x < A ;  0 < z < 1). 
For simplicity we assume reflection symmetry about the plane x = 0 (so that there 
is no flow or flux across the lateral boundaries) and impose stress-free boundary 
conditions at top and bottom. Then 

(7 ) 

(8) 

Y = a; Y = 8 = ..T = 0 on z = O , l ,  

Y = a; Y = a,@ = azZ = 0 on x = 0 , A .  

Equations (1)-(3), (7) and (8) define the basic system to be studied. We note that 
this system also possesses a further symmetry, for it is invariant under the 
transformation 

The efficiency of double-diffusive convection is conveniently described by the 
thermal and solutal Nusselt numbers NT and N, defined by 

These Nusselt numbers measure the rates at  which heat and salinity are transported 
across the layer in the convective state relative to those in the (unstable) conductive 
state. Time averages of these Nusselt numbers will be denoted by IT and I,, and 
both are independent of z if the convection is statistically steady. Of some importance 
in laboratory studies of thermosolutal convection is the variation of the destabilizing 
buoyancy flux carried through a layer with the stability parameter A. An average 
value of the buoyancy-flux ratio x = /3Fs/UFT, where F, and FT are the dimensional 
solute and heat fluxes respectively, can be expressed in terms of N, and NT as 

For A 2 2, the buoyancy-flux ratio in various experiments is strikingly insensitive 
to A (cf. Turner 1973, chapter 8;  Gough & Toomre 1982). For oscillatory solutions 
we find that varies by 7 % while A increases by 20 %. 

2.2. Small-amplitude theory 
The system (1)-(3) with the boundary conditions (7) and (8) admits the pure 
conduction solution Y = 8 = Z = 0 for all values of the Rayleigh number R,. In 
this section we summarize the linear stability properties of this trivial solution (e.g. 
Baines & Gill 1969; Huppert & Moore 1976), and discuss the smsll-amplitude 
nonlinear solutions present near the onset of instability. 

The stability properties of the conduction solution are most conveniently described 
in terms of normalized Rayleigh numbers rT = RT/R,,  T,  = Rs/R,, where 
R, = n4( 1 + A2)s/h4 is the critical Rayleigh number for the onset of convection in the 
absence of a solute gradient. As rT is increased, the conduction solution loses stability 
to growing oscillations a t  
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provided that 7 < 1 and 

Thus there is an oscillatory (or Hopf) bifurcation at rT = r$), corresponding to the 
onset of overstability, if (13) is satisfied. These conditions are in agreement with the 
physical argument presented in 8 1. The frequency of the neutrally stable oscillations 
at TT = r$?) is given by 

As rT is increased beyond r$?) the frequency of the overstable oscillations in the 
linearized system decreases to zero at rT = r$) and for rT > rf,) there are two real 
positive eigenvalues, one of which passes through zero when rT reaches 

The stationary bifurcation at rT = r$) corresponds to the exchange of stabilities, and 
r$) > r$') if (13) is satisfied. A branch of oscillatory solutions bifurcates from $1 ; the 
bifurcation may be either subcritical or supercritical (Huppert & Moore 1976; Da 
Costa et al. 1981). Similarly, a branch of steady solutions bifurcates from r$). This 
bifurcation is always subcritical if convection sets in as overstable oscillations 
(r$) < r g ) ) .  Thus there are small-amplitude steady solutions for rT < r$). These 
solutions are unstable with one O( 1) unstable eigenvalue. 

Nonlinear solutions to (1)-(3), (8) and (9) can be found when r,  = r$) +s2,  E 4 1 
(Knobloch & Proctor 1981). Then the amplitude of the oscillations is O(E),  while their 
frequency is also O(E).  In  this case the whole branch of oscillatory solutions is 
accessible to perturbation theory. The calculation shows that the oscillatory branch 
terminates on the branch of unstable steady solutions that bifurcates subcritically 
from r$), with the formation of an infinite period heteroclinic orbit at r$) joining two 
saddlepoints corresponding, respectively, to unstable clockwise and unstable 
anticlockwise rolls. Structural stability considerations (Arnol'd 1977,1983 ; Gucken- 
heimer & Knobloch 1983) show that the heteroclinic orbit persists for finite values 
of E .  The existence of this heteroclinic orbit will be important in what follows. In  figure 
1 (a) we show the bifurcation diagram for this case and in figure 1 (b) the heteroclinic 
orbit at r$).  

r$) = 1 +r , /7 .  (15) 

2.3. Previous numerical studies 
For larger amplitudes equations (1)-(3), (8) and (9) have to be solved numerically. 
This was first done by Veronis (1968) using a truncated Fourier representation, and 
subsequently by Huppert & Moore ( 1976) employing a second-order finite-difference 
scheme (Moore, Peckover & Weiss 1974). Huppert & Moore were able to reach larger 
supercritical Rayleigh numbers and hence larger amplitudes. They also found the first 
example of a transition from periodic to aperiodic solutions for a system of partial 
differential equations. Since their study serves as the starting point for the present 
paper, we summarize below those of their results that are particularly relevant. 

Huppert & Moore computed finite amplitude time-independent solutions corre- 
sponding to stable steady overturning convection as a function of the Rayleigh num- 
ber RT for several values of the solutal Rayleigh number R,, and determined the 
minimum Rayleigh number Rgin, for which such solutions existed. They were also 
able to follow the branch of oscillatory solutions from R$) to larger amplitudes, and 
to investigate its development as a function of R,. Such results are conveniently 
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FIQURE 1. (a) Analytical amplitude-Rayleigh number (a+,) diagram for the partial differential 
equations with u = 1.0, 7 = 0.316 and rs = r g J + 8 ,  E 4 1, showing that the branch of oscillatory 
solutions (solid line) terminates on the branch of unstable steady solutions (broken line) a t  

= p(') N 1.468, where p = (rT-1.925)/ee. (b) Phme portrait a t  rT =r$? showing a heteroclinic 
limit cycle joining two saddle points (after Knobloch & Proctor 1981). 

I \  

2000 2500 3000 3500 
RT 
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RT 

FIQURE 2. (a) Numerical Nusselt number-Rayleigh number (NT-RT) diagram for the partial 
differential equations with A = 1.414, u = 1.0, r = 0.316 and R ,  = los showing that the branch 
of oscillatory solutions still terminates on the branch of unstable steady solutions at R$) N 2280. 
(b) The period P of the oscillations as R, approaches R$?. The sharp rise in the period is 
characteristic of the approach to the heteroclinic limit cycle (after Huppert t Moore 1976). 

represented in an amplitude-Rayleigh number diagram (cf. figure la), with the 
amplitude of motion measured by the thermal or solutal Nusselt numbers N,,N,  
evaluated, say, a t  the bottom of the layer ( z  = 0) .  For A = 2?, u = 1, 7 = 10-4 and 
R, = lo3, Huppert & Moore found that the solutions along the oscillatory branch 
became more obviously nonlinear with increasing R,, and disappeared beyond 
R, w 2275 (see figure 2a). In  figure 2 (b) we show the period P of the oscillations along 
the oscillatory branch. As the end of the branch is approached the period increases 
rapidly. For R, = 103.5, Huppert & Moore located a transition before the end of the 
oscillatory branch at  which the period of the Nusselt numbers N T ( t )  and N,(t)  
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doubled. No further transitions were found and the branch terminated at  RT x 4450. 
For R, = lo4, however, the first transition at  RT x 9300 was followed by a second 
transition at  RT x 10000 beyond which the oscillations were observed to be 
aperiodic. These oscillations disappeared at RT x 11 100. Calculations with A = 6, 
CT = 1 , 7  = 10-l and R, = 10s.5 showed similar behaviour, with the two transitions 
occurring at RT x 3350 and RT x 3550 before the branch ended at RT x 4150. No 
other transitions were found in spite of some effort. Huppert (1976) concluded that 
aperiodicity in this system did not come about via a cascade of period-doubling 
bifurcations. In the following section we show that period doubling does occur, but 
that Huppert (1976,1977) and Huppert & Moore (1976) were mistaken in identifying 
the period-doubling in the Nusselt numbers as the first period-doubling bifurcation. 
It is a bifurcation to asymmetrical oscillations. We shall argue that these bifurcations 
are intimately connected with the presence of the branch of unstable steady solutions 
(cf. figure 2a)  and the existence of a heteroclinic orbit a t  the end of the oscillatory 
branch, as suggested by figure 2 (b). 

2.4. A cascade of period-doubling bifurcations 
The eigenfunctions of the linear problem discussed in $2.2 have the form 
Y = Yl l ( t )  sin (nz/A) sin nz, and it can be shown that nonlinear interactions generate 
solutions with the form 

Y = x x ymn(t) sin (T) sin nnz (m + n even) 

(Veronis 1968). These solutions have the same symmetry (9) as the system being 
studied, corresponding to spatial symmetry about the centre of the convection roll, 
such that 

Y(s,z) = Y(A-z,l-z), 8 ( x , z )  = -8 (A-z ,  1-z) ,  C(z,z) = - -C(A-X,  1-z) .  

(16) 
mnx 

m n  

(17) 

Such solutions may still be unstable to perturbations that violate this symmetry ; 
indeed, it is known from numerical studies of two-dimensional Rayleigh-BBnard 
convection (Curry et al. 1984) and magnetoconvection (Proctor & Weiss 1982; Arter 
1983) that symmetry-breaking bifurcations can occur. We shall nevertheless follow 
Veronis (1968) and Huppert & Moore (1976) in imposing the spatial symmetry of (9) 
and (17) upon our solutions, in order to reduce computing time. This is a stringent 
requirement, which suppresses any symmetry-breaking bifurcations, but it allows 
detailed comparison of our results with earlier work and, more important, permits 
us to relate numerical experiments with the partial differential equations to the 
behaviour of the fifth-order model introduced in $2.5 below. 

Periodic oscillations may also possess a temporal symmetry, relating solutions 
separated by half the period. For an extended layer this symmetry implies that 
increasing time by t P  is equivalent to horizontal translation by a distance A,  so that 
clockwise and anticlockwise motions are always similar. For a single roll, increasing 
time by t P  is equivalent to reflection about the plane z = !jA and the symmetry is 
given by 
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(4 (b) 

I 1 

FIQURE 3. Solutions of the partial differential equations: plots of solutal Nusselt number (N, )  
against horizontally averaged velocity on the lower boundary ( (u))  for A = 1.414, (r = 1.0, 
7 = 0.316, R, = lo4. Shown are (a) R ,  = 8600 (symmetrical limit cycle); ( b )  R ,  = 10000 (asym- 
metrical); (c) R ,  = 10100 (period 2); (d )  R ,  = 10120 (period 4) ;  (e) R ,  = 10150 (chaotic); and (f) 
R, = 10200 (chaotic). 
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Combining this temporal symmetry with the spatial symmetry (9), we find that 

(19) 1 
Y(x,  2, t )  = - Y(x ,  1-2, t + i P ) ,  

Z ( x , z , t )  = -C(z, l - z , t + + P ) .  

Q ( z , ~ , t )  = -Q(z, l - ~ , t + i P ) ,  

This symmetry obviously holds for the marginally stable oscillation at rT = r$), with 
Yll cc cos (2nt/P), and persists throughout the small-amplitude regime discussed in 
$2.2. A consequence of the symmetry is that quadratic measures of the convective 
efficiency, such as the mean kinetic energy E, or the Nusselt numbers N, and N,, 
do not depend on the sense of motion in the roll and therefore have a period of +P, 
instead of P. 

In order to understand the nature of the first transition discovered by Huppert 
t Moore (1976) we have used their numerical code to obtain detailed solutions of 
(1)-(3), (8) and (9). In figures 3(a,b) we show the solution for h = 24, r = 1, 
7 = 10-i x 0.316, R,  = lo4 before (RT = 8600) andafter ( R ,  = l O 0 o O )  the transition, 
projected onto the ( ( u ) ,  Ns)-plane, where ( u )  is the horizontally averaged horizontal 
velocity along the lower boundary, 

(20) (u) = JoA u(z ,  0 ,  t )  dz, 

and N ,  is evaluated at z = 0. These projections show clearly that there is a transition 
from a symmetrical limit cycle (where ( u )  has period P but N, has period iP) to an 
asymmetrical limit cycle in which clockwise and anticlockwise motion no longer have 
the same amplitude (and both (u) and N, have period P). Temporal symmetry is 
broken by a (supercritical) pitchfork bifurcation, in which the symmetrical solution 
loses stability and a pair of stable asymmetrical solutions are created. These two 
solutions transform into one another under the symmetry (18) ; which one is realized 
depends on the initial conditions. This breaking of symmetry is manifested as an 
apparent period-doubling in N,, N,, and E. 

Equations (1)-(3), (8) and (9) do, however, exhibit true period-doubling bifurcations. 
Indeed, a bifurcation to asymmetry is a necessary prerequisite for period doubling 
(see $3.4 below). In  figure 3 ( c , d )  we show a period-2 and a period-4 solution in the 
( ( u ) ,  Ns)-plane. These solutions are present for R ,  = 10100 and RT = 10120. 
Observe that the period-2 solution describes the asymmetrical cycle twice before 
closing. As RT is further increased more period-doubling bifurcations can be found. 
The bifurcation points appear to accumulate rapidly ; beyond the accumulation point 
aperiodic solutions are found. We show examples of two such solutions in figures 
3(e,f) for R ,  = 10150 and RT = 10200. From these figures the relationship of the 
aperiodic solutions to the periodic solutions can easily be seen. The structure of the 
aperiodic regime is, however, very complex; we return to it in much greater detail 
in $3. 

2.5. Fifh-order model system 
Equations (1)-(3), (8) and (9) can be modelled by a system of five ordinary differential 
equations originally suggested by Veronis (1965) : 

U = U [ - U + T ~ b - r s d ] ,  (21) 
6 = -b+a( l -c ) ,  (22) 

c = m( -c+ub),  (23) 

d = -7d+a( l -e ) ,  (24) 

d = w(-Te+ad), (25) 
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(4 (b) 

FIQURE 4. The fifth-order model: (a) Sketch of a heteroclinic limit cycle connecting saddle-foci; 
( b )  Sketch of a possible homoclinic limit cycle. 

where a = 47c2/p, p = 7c2( 1 + l/h2), and differentiation is with respect to a scaled time 
t* = pt .  The variables a, b and d represent the amplitudes of the linear eigenmodes 
of !P, 8 and Z respectively ; c and e provide a primitive representation of the thermal 
and solutal boundary layers at the top and bottom of the layer as described by 
second-order perturbation theory (cf. Da Costa et al. 1981). The symmetry of the 
original problem with respect to horizontal translations by a distance h corresponds 
to the symmetry 

a+-a, b+-b ,  c + c ,  d - t - d ,  e + e ,  (26) 

of the model. By construction the model equations have the same linear and 
small-amplitude properties as (1)-(3). A t  larger amplitudes the model equations 
favour subcritical convection because they neglect the deceleration of the velocity, 
described by the amplitude a,  in the solutal boundary layers at  the top and bottom 
of the cell. However, (21)-(25) have the virtue that steady solutions can be found 
analytically and their stability properties easily ascertained. The model shows that 
the subcritical branch of unstable steady solutions that bifurcates off the trivial 
conduction solution a = b = c = d = e = 0 at r$)  turns around a t  rT = r p  where i t  
acquires stability (Da Costa et al. 1981). Thus the stable subcritical finite-amplitude 
overturning solutions present for rT > r p  are connected to r$)  by a branch of 
unstable steady solutions. We conjecture that this is also true for the partial 
differential equations, as indicated in figure 2 (a) .  

The model equations can easily be integrated numerically, and the development 
of the branch of oscillatory solutions as a function of the parameters can be mapped 
out in some detail. For values of rs close to r g )  the results obtained by Knobloch 
& Proctor (1981) apply. The branch of oscillatory solutions then terminates at r$) 
on the branch of unstable steady solutions in a heteroclinic orbit (cf. $2.2). Da Costa 
et al. (1981) showed numerically that the oscillatory branch continues to terminate 
on the unstable steady branch as rs  is increased. The nature of the heteroclinic orbit 
at  r$) ( rs)  depends, however, on the eigenvalues along the steady branch. Close to $1 
there are one real positive (unstable) O( 1 )  eigenvalue s1 and four real negative (stable) 
eigenvalues s2, ..., s5, one of which (s2) is small since it vanishes at r$);  thus 
a1 > 0 > s2 > s3 > sp > s5. For rs close to rg)  the unstable eigenvalue decreases along 
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FIGURE 5. Solutions of the fifth-order model projected onto the (a, e)-plane for m = 8/3, Q = 1, 
7 = 0.316, r ,  = 15.0 [R, = 98631. Shown are (a) rT = 13.4 [RT = 88101, symmetrical limit cycle; 
( b )  rT = 13.5 [RT = 88761, asymmetrical limit cycle; (c) rT = 13.56 [RT = 89161, period 2 and (d) 
rT = 13.564 [RT = 89181, chaotic transient at the end of the oscillatory branch. These solutions 
should be compared with the analogous (u), N ,  projections for the partial differential equations 
shown in figure 3. 

the steady branch and passes through zero at F. Beyond the turning point at  Gin 
the steady branch is stable. The fixed points corresponding to clockwise and 
anticlockwise overturning convection thus have a one-dimensional unstable mani- 
fold, and a four-dimensional stable manifold. The heteroclinic orbit is tangent to the 
plane spanned by the unstable eigenvector and the eigenvector of the small stable 
eigenvalue (cf. figure 1 b).  For larger values of rs the small negative eigenvalue s, 
decreases along the steady branch until at r$ a2 = s3 (> s4), and thereafter (i.e. for 
r$ > rT > Gin) these two eigenvalues lie in the complex plane. With the appearance 
of a pair of complex-conjugate eigenvalues the fixed points change from saddles into 
saddle-foci. A heteroclinic orbit joining the two saddle-foci spirals into one fixed point 
along a two-dimensional surface and emerges from the fixed point along the 
one-dimensional unstable manifold which takes it to the other saddle-focus where it 
again spirals into the fixed point. We show a sketch of such an orbit in figure 4 (a). 

For comparison with the results describedin §§2.3,2.4, we take h = d (w = g), u = 1, 
and 7 = l O - i ,  and consider the effect of increasing rs. At r$)  = 0.2929, when the 
oscillations first occur, a pair of complex eigenvalues appears on the branch of 
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unstable steady solutions a short though finite distance from r$? = r$) = 1.925. When 
rs.= 1 there is a pair of complex eigenvalues on the unstable steady branch for en N 2.283 < rT < r$ N 3.555. The branch of oscillatory solutions terminates in a 
heteroclinic orbit at r$) N 2.8331542, well within this region. It can be confirmed 
that the trajectory describes tight loops around the saddle-foci (cf. figure 16 of 
Knobloch & Weiss 1983) which are qualitatively similar to those in figure 4(a). 

If we solve (21)-(25) for r ,  = 15 (R,  = 9863) we can follow the oscillatory branch 
from r$? for increasing values of TT. Initially, the oscillations have a temporal 
symmetry, corresponding to (19), such that 

~ ( t )  = -a(t+$P), b( t )  = -b(t+$P),  d( t )  = -d( t+$P),  

c(t) = c( t+$P),  e(t) = e( t++P) .  (27) 

We find at rT x 13.47 a bifurcation to asymmetry, followed at rT x 13.55 by the fist 
period-doubling bifurcation (cf. Da Costa et al. 1981). In figure 5(a,b,c) we show 
examples of orbits that are symmetrical, asymmetrical and of period 2, projected on 
the (a, e)-plane. This plane is the analogue in the model problem of the ((u), N,)-plane 
used for the full partial differential equations in $2.4. Figure 5 should be compared 
with figure 3. We see that the solutions of the model system are in qualitative 
agreement with those of equations (1)-(3), although the model solutions have less 
structure. Two more period-doubling bifurcations are easily located and occur at 
rT x 13.562, and rT x 13.5631 ; at TT x 13.5635 the solution is aperiodic, and the 
oscillatory solutions disappear at rT x 13.564. Figure 5 ( d )  shows a trajectory for 
TT = 13.564 which initially appears chaotic, but eventually spirals into the stable 
fixed point on the upper portion of the steady branch. Thus both the partial 
differential equations (1)-(3) and the fifth-order model (21)-(25) approach chaos by 
a period-doubling cascade. There are, however, significant differences between the two 
systems; we shall describe these in the following section. 

3. Successive transitions in oscillatory behaviour at 7 = 0.316, R ,  = lo4 
3.1. Numerical procedure 

In this section we describe in detail our investigation of the solutions to the partial 
differential equations (1)-(3), (7) and (8) for the parameter values (T = 1, 
7 = 10-t x 0.316, R, = lo4. The survey carried out by Huppert & Moore (1976) 
suggested that this choice of parameters (plus another to be considered in $4) is 
especially promising for further study of transitions in time-dependent behaviour. 
The aspect ratio A was chosen to be either A = d, the value that minimizes the 
Rayleigh number for onset of convection, or A = 1.5, for convenience in defining the 
mesh. The qualitative aspects of the results are unchanged by increasing A from 1.414 
to 1.5, although individual bifurcations are displaced by up to 1.5 %. 

Two different numerical codes have been used for these investigations. Both codes 
use the finite-difference formulation of equations (1)-(3) presented by Moore et al. 
(1974) in which Y, V 2 Y ,  8 and Z are specified on grids staggered in space and time. 
The difference scheme has second-order accuracy and is centred in both space and 
time; in stepping forward in time, the nonlinear terms are treated explicitly and the 
diffusive terms are represented by a Dufort-Frankel scheme. The associated Poisson 
equation linking stream function and vorticity is solved by Fourier decomposition 
and tridiagonal elimination. The code used to construct solutions for aspect ratio 
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423 

R $’ RT 

FIGURE 6. Steady. and oscillatory solutions of the partial differential equations : schematic 
bifurcation diagram of the solutal Nusselt number N ,  as a function of R,. Note the bubbles of 
period-doubling bifurcations on the first and second oscillatory branches, the hysteresis loop 
connecting the two branches and subsequent (conjectured) branches. Conjectured unstable 
solutions are indicated by broken lines. 

A = d is the same as that used by Huppert & Moore. The other code has been 
structured to take particular advantage of vector computers like the Cray-1; it 
employs improved fast Fourier transform (FFT) algorithms (Moore 1985) and 
tridiagonal inversion techniques (Moore & Wallcraft 1986). The vector structure of 
this numerical code also significantly enhances the computational performance on 
computers like the DEC VAX. 

Imposition of the spatial symmetry (17) means that we have to compute the 
variables explicitly over only half of the spatial computational domain. We typically 
employed 16 mesh intervals in the vertical and 12 in the horizontal direction, 
corresponding to 24 intervals over the range 0 < 5 < A. Such a mesh in effect yields 
a total of 594 independent variables, which may be contrasted with the five modes 
used in $2.5. Boundary-layer structures are adequately resolved by our computational 
grids. The grid resolution was doubled in both dimensions for certain runs, with a 
corresponding reduction in the time step, to test the accuracy of the finite-difference 
representation. In all cases described here, the bifurcation pattern appeared to be 
unaltered, though individual transitions were displaced by up to 1 %. The value of 
7 = 0.316 used here was chosen for computational convenience, following Veronis 
(1968) and Huppert & Moore ; the solutal boundary layers at top and bottom are then 
broader and more easily resolved than they would be for thermohaline convection 
with 7 = 0.01 (e.g. Gough & Toomre 1982). 

In characterizing the different kinds of solutions, we shall use kinetic-energy phase 
plots and associated power spectra. We define the kinetic energy E by 

E(t)  = Jol dz JoA dx [(a, w2 + (a, q2] = - f s,’ dz I,* dx W 2 Y ,  (28) 
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and plot trajectories in the (E,L?) phase plane, where the overdot denotes a time 
derivative. The power spectrum is defined by 

and is evaluated for a sufficiently large T once the initial transient has decayed. The 
computation of the spectrum was accomplished by fast Fourier transforms. The 
details of the spectrum, though not the positions of the lines, depend somewhat on 
the commensurability of the length of the time series 2T with the period, P = 27t/w1, 
of the periodic oscillations. If the time series is not an integral number of periods, 
the spectral lines are broadened. This artifact is easily distinguishable from real 
chaotic spectra and occurs at lower power levels. Since the computer runs were made 
for a predetermined number of time steps (typically 215 = 32 768 steps after the initial 
transients had died away) and the period was a priori unknown it was not possible 
to obtain runs over an exact integral multiple of the period. 

3.2.  The first oscillatory branch : bubble structure 

Figure 6 provides a schematic summary of the results to be described in this section. 
The amplitudes shown for oscillatory solutions are chosen so as to distinguish between 
products of pitchfork bifurcations. For A = 1.5, the branch of oscillatory solutions 
bifurcates (supercritically) from the conduction solution when RT reaches 
R$?’ = 7720. The amplitude of the oscillations increases with increasing RT and the 
oscillations undergo a bifurcation from symmetry to asymmetry followed by a 
cascade of period-doubling bifurcations leading to semiperiodic chaotic solutions. 
These bifurcations are reversed as RT increases further forming a complete bubble 
as described in 5 1. For larger values, solutions lie on a second oscillatory branch. We 
conjecture that the two branches are connected by a branch of unstable oscillations 
in a pair of saddle node (more precisely looploop) bifurcations as indicated. The 
solutions on the second oscillatory branch are different in form, and show a greater 
variety of behaviour. In particular the chaotic regime was interrupted by a number 
of periodic windows. Also sketched in figure 6 is the conjectured position of the branch 
of unstable steady solutions that bifurcates from R$? = 32280, together with the 
stable steady solutions present at  large amplitudes for RT > RFin x 10400. We 
present first the results for the first oscillatory branch, followed by those for the 
second branch. 

The small-amplitude oscillations present near the Hopf bifurcation at R$) are 
symmetrical. An example of such a symmetrical solution of period 1, denoted as S1, 
is shown for RT = 9000 in figure 7 ( a ) .  The motion in the upper (I#,@-phase-plane 
plot in figure 7 (a)  is clockwise; the orbit describes two cycles during a full period and 
the second cycle repeats the first cycle exactly. For a symmetrical solution it is 
necessary that the fluid motions in the convection cell should have equal amplitudes 
during the rising and falling portions of the oscillation. The kinetic-energy power 
spectrum is shown in the lower panel of figure 7 (a) .  The basic period of this S1 solution 
is P = 47t/w0 and the spectrum has power both at the fundamental frequency wo and 
a t  its harmonics. These overtones control the shape of the orbit in the (E, @-plane. 
As R, is increased the oscillations undergo a bifurcation to asymmetry at RT = 9200. 
In the energy phase plot shown for RT = 9500 in figure 7 ( b ) ,  the bifurcation to 
asymmetry is revealed by a difference in the trajectory during the two halves of the 
cycle. The two halves of the cycle separate only gradually as R ,  is advanced beyond 
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the bifurcation point, implying that this bifurcation (like the subsequent period- 
doubling bifurcations) is supercritical. The kinetic-energy power spectrum in figure 
7(b) now contains the two frequencies w1 = ?po and wo, along with their harmonics 
and sums and differences. We denote such a solution by Pi for asymmetrical period-1 
solution. The first appearance of asymmetry beyond RT x 9200 shows up as a very 
small peak in power at  wl, with this peak becoming more prominent as the asymmetry 
is emphasized by increasing RT. 

The subsequent period-doubling bifurcations with increasing RT also appear as 
gradual splittings of the trajectories in the (E ,  E)-plane and associated subharmonic 
peaks in the power spectrum. We give examples of a period-2 (P2) solution at  
RT = 10000 in figure 7(c) and a P4 solution at R, = 10050 in figure 7(d). These 
period-doubling bifurcations manifest themselves by the appearance of new peaks in 
the kinetic-energy spectra corresponding to ?pl and and sums and differences with 
the other frequencies already present. Comparison of orbits for these P2 and P4 
solutions with that of the Pl solution in figure 7 (b )  reveals the presence of a distinctive 
additional loop in the period-doubled orbits as the trajectories traverse the 
neighbourhood of one of the two saddle points. 

We have located one more period-doubled solution (P8) a t  R, = 10070, and our 
surveys of the solutions are consistent with a Feigenbaum sequence of period- 
doubling bifurcations that accumulates at  some finite value of R, at an asymptotic- 
ally geometric rate. The precise determination of the bifurcation points would require 
many more solutions than we have been able to obtain, given constraints on 
computing resources. Beyond the accumulation point, estimated to be at 
R, x 10075, we find aperiodic solutions. In the spectrum the peaks broaden 
dramatically and as R, is increased the lower frequency peaks (and harmonics) get 
successively submerged in the noise. We illustrate this with solutions at  RT = 10 100 
(figure 7e) and RT = 10200 (figure 7f). The first of these is a semiperiodic solution 
of period 2 (SP2). This term was introduced by Lorenz (1979) to describe a solution 
that oscillates predictably between two regions of phase space without ever repeating 
itself. In  the power spectrum in figure 7 ( e )  this is manifested by peaks at  $1, wl, and 
wo and harmonics, and the spectrum contains a characteristic broadband component. 
The (E,d)-plot resembles a twisted ribbon with a prominent kink as the solution 
passes the saddle point. What is probably being seen in projection is an attractor that 
forms a low-dimensional flattened ‘tube’ in the phase space. (Note that points are 
plotted after each time step ; for periodic solutions this procedure eventually 
generates a closed curve but aperiodic trajectories retain a fuzzy appearance.) As RT 
is increased to 10200 the peaks in power corresponding to !pl (and harmonics) 
disappear; the solution is now SP1 (an asymmetrical semiperiodic solution of 
period 1). For brevity, in this figure 7 ( f )  and in the subsequent panels only the power 
spectra are shown. As RT is further increased the preceding bifurcations occur in 
reverse, until a symmetric S1 solution is again established. Thus in the SP2 solution at  
RT = 10250, shown in figure 7(g), the peak has reappeared in the power 
spectrum, while the subsequent solutions shown are a distinctive period 4 (P4) at 
RT = 10275 in figure 7(h), a P2 a t  R, = 10300 in figure 7(i), and finally a 
symmetrical S1 solution with only wo and its harmonics present in the spectrum at 
RT = 10500 in figure 7 (j). The precise value of the frequency wo changes slowly with 
RT ; note that the wo peak consistently possesses the greatest power (in the log-@ 
scales plotted here) in all of these different solutions and can readily be identified. 

Details of all these illustrated solutions (and those in subsequent figures) are given 
in table 1. In  particular, table 1 lists the fundamental frequency wo, the time-averaged 
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RT 

go00 
9 500 

loo00 
10050 
10 100 
10200 
10250 
10275 
10300 
10500 

10300 
10470 
10472 
10475 
10485 
10508 
10510 
10515 
10520 
10575 
10600 
10625 
11000 

Type 
s1 
Pi 
P2 
P4 
SP2 
SP1 
SP2 
P4 
P2 
s1 

s1 
P4 
SP8 
SP2 
SP1 
IS3 
s 3  
P3 
553 
IP2 
P2 
C 
C 

First 
WO 

50.752 
46.985 
41.993 
41.406 
40.930 
40.087 
39.719 
39.417 
39.232 
37.135 

oscillatory branch 
B RT 

3.061 1.690 
2.617 1.665 
2.268 1.671 
2.247 1.674 
2.221 1.676 
2.167 1.674 
2.136 1.672 
2.124 1.673 
2.110 1.673 
1.968 1 .667 

Second oscillatory branch 

32.693 2.352 1.823 
30.961 2.378 1.846 
30.964 2.378 1.846 
30.968 2.373 1.845 
30.865 2.385 1.850 
31.017 2.320 1.831 
31.256 2.274 1.817 
31.263 2.262 1.813 
31.034 2.296 1.824 
31.707 2.162 1.781 
31.626 2.127 1.768 
- 2.189 1.795 
- 2.217 1.834 

RS 
2.254 
2.298 
2.392 
2.409 
2.423 
2.437 
2.443 
2.449 
2.458 
2.474 

2.700 
2.792 
2.792 
2.791 
2.802 
2.770 
2.737 
2.730 
2.756 
2.679 
2.659 
2.717 
2.856 

x 
0.04687 
0.04596 
0.045 25 
0.04525 
0.045 2 1 
0.045 16 
0.045 11 
0.04508 
0.04505 
0.04470 

0.04548 
0.04567 
0.04567 
0.04566 
0.04569 
0.04551 
0.04533 
0.04530 
0.04542 
0.04498 
0.04485 
0.04507 
0.044 77 

TABLE 1. Properties of illustrated numerical solutions of partial differential equations for aspect 
ratio A = 1.5, with Rs = lo4, r = 0.316 and u = 1 

kinetic energy E, the time-averaged Nusselt numbers flT and xs, and the associated 
buoyancy flux ratio 2. A summary classification by solution type of all runs made 
with A = 1.5 is given in table 2. 

In figure 8 we present a brief segment of the time series for the P4 solution found 
at RT = 10050. In  figure 8 (a) we show the vertical velocity w(x = 0, z = a7 t )  and for 
comparison in figure 8 ( b )  the kinetic energy E(t) .  Note the splitting in successive 
maxima or minima. The presence of many Fourier components is clearly evident and, 
although one can reasonably guess at the periodicities involved, the power spectrum 
in figure 7 ( d )  is needed to remove any ambiguities. Finally in figures 8 ( c )  and ( d )  we 
show N,(z = a, t )  and N,(z = a, t ) .  

The results obtained for the first oscillatory branch are summarized schematically 
in figure 6. The double passage through the bifurcation sequence has a bubble-like 
structure and we shall refer to such a double sequence, here from $31 to semiperiodicity 
and back to S1, as a bubble. Typically, we might expect to find brief intervals of R, 
with periodic solutions, lying within the range of chaotic behaviour, but we have not 
located any such periodic windows in the centre of this bubble. 

3.3. The second oscillatory branch: periodic windows 
The first oscillatory branch ends at R, z 10500, and for €2, > 10500 the solutions 
settle on the second oscillatory branch. This branch can be extended to smaller R, 
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First oscillatory branch Second. oscillatory branch 

RT 
8000 
9000 
9 100 
9 200 
9 250 
9 500 
9 750 
9 900 
9 950 

10000 
10050 
10065 
10070 
10075 
10 100 
10200 
10250 
10275 
10300 
- 
- 

10 500 
10 505 

Solution type RT Solution type 

s1 
s1 
s1 
P1 
P1 
P1 
P1 
P2 
P2 
P2 
P4 
P4 
P8 
C 
SP2 
SP1 

10275 
10300 
10400 
10450 
10465 
10470 
10471 
10472 
10475 
10485 
10500 
10505 
10508 

P4 10510 
P2 10515 

10516 
10517 
10520 

Evolves to 10525 
second branch 10550 

10575 
10600 
10625 
10650 
10675 
10690 
10700 
10725 
10750 
10775 
10800 
10810 
10815 
10820 
10825 
10830 
10850 
10900 
10 950 
11000 
11 050 
1 1 060 
1 1 065 

B' 

Evolves to 
first branch 
51 
P1 
P1 
P2 
P4 
P4 
5p8 
5p2 
SP 1 
5p1 
SP 1 
153 
53 
P3 
P6 
5p3 
553 
5p1 
C 
1p2 
P2 
C 
C 
153 
5p3 
P3 
C 
C 
53 
53 
53 
53 
553 
C 
C 
C 
C 
C 
C 
P4 
C 
All solutions evolve 
to steady branch 

TABLE 2. Classification of numerical solutions of partial differential equations obtained for aspect 
ratio h = 1.5, with R, = lo4, T = 0.316 and cr = 1 
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FIGURE 8. Time series for a period-4 solution on the first oscillatory branch (RT = 10050). 
(a) Vertical velocity w(0, 4, t ) ;  (a) E(t ) ;  (c) AtT(;, t ) ;  ( d )  Ns(?j, t ) .  The time series displays an overall 
period P = 16a/w, = 1.2140. 

and apparently begins at  R, x 10300; for smaller R, only the first branch exists 
(see figure 6) .  We now describe the bifurcations on the second branch, starting with 
the symmetrical period 1 (S1) solution at  R, = 10300 (figure 9a).  We display, as in 
figure 7, the kinetic-energy phase plane and the energy power spectrum; comparing 
the (E,  8) trajectory here with that of the S1 solution on the first oscillatory branch 
in figure 7 ( a ) ,  we find that an additional distinguishing loop is now present. Moreover, 
the period P has increased from 0.338 (for the S1 solution at R, = 10500) to 0.384. 
We also show in the bottom panels the Poincarb return map obtained by plotting 
the values of the Nusselt numbers NT, N, ,  evaluated at  z = !j, each time the vertical 
velocity w(x = 0, z = 4, t )  passes through zero from negative to positive. For the S1 
solution this procedure generates a single point. 

As on the first branch S1 undergoes a bifurcation to asymmetry followed by a 
succession of period-doubling bifurcations as RT is increased. In  figure 9 ( b )  we show 
a P4 solution present for RT = 10470. The Poincarb map now has four points. These 
period-doubling bifurcations accumulate very rapidly. A t  R, = 10472 we are already 
in the aperiodic regime and figure 9(c) shows the SP8 solution found there. Here the 
spectrum is noisy, but still contains peaks down to ~ l .  The Poincarb map shows eight 
regions that are visited in regular order, although only four regions can be 
distinguished clearly. A t  R, = 10475 in figure 9 ( d )  the solution is probably SP2, and 
the Poincar6 map has coalesced into a curve with a hook. At R, = 10485 in figure 
9 ( e ) ,  we have an SP1 solution whose Poincarb map looks distinctly different. As R, 
is increased further we come to the first of our period 3 windows. The appearance 
of the window is heralded by intermittency associated with the saddle-node bifurcation 
that produces the periodic solution. Such an IS3 solution found at  R, = 10508 is 
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shown in figure 9 (f) .  This intermittent behaviour can just be detected in the spectrum 
and the Poincar6 map. 

In figure 10(a) we show a symmetric period 3 solution (53) at RT = 10510. It 
manifests itself by having peaks in the spectrum at wo, %o, and $uo, along with various 
harmonics, while the Poincar6 map has shrunk to just three points. This period 3 
solution undergoes a bifurcation to asymmetry (P3) followed by period-doubling 
bifurcations producing P6, P12, and so on. We have found such solutions at 
RT = 10515 (P3) shown in figure 10 (b)  and at RT = 10516 (P6). These solutions have 
frequencies ~o and +p0 in their spectra, respectively. These period-doubling 
bifurcations apparently accumulate rapidly leading to a semiperiodic regime based 
on period 3. At RT = 10517 we have found an SP3 solution, and at RT = 10520 in 
figure lO(c) there is a semiperiodic symmetrical solution of period 3 (SS3). As R, is 
increased further the three peaks associated with the frequencies wo, $wo and ~o are 
gradually replaced by two peaks at wo and !po and their harmonics superposed on 
a noisy spectrum. Such an SP1 solution is found at R, = 10525. A t  RT = 10575 in 
figure 10(d) we find an intermittent period-2 solution (IP2), which gives way to a 
periodic solution of period 2 at RT = 10600 in figure 10 ( e ) .  Another period-3 window 
was located at RT = 10675 (IS3), RT = 10700 (P3), and after an interval of chaos 
again at  RT = 10775 (S3), RT = 10800 (S3), RT = 10810 (S3), RT = 10815 (53) and 
RT = 10820 (SS3). It is likely (cf. Glendinning & Sparrow 1984) that these windows 
are on additional but coexisting oscillatory branches. Thereafter the solutions become 
increasingly chaotic (cf. figure l O f ) ,  although at RT = 11 050 we have found another 
P4 solution. The ‘second’ oscillatory branch finally terminates around RT % 11 060 
and the solution evolves to a steady state. 

In figure 11 we provide a different description of some of the aperiodic solutions 
shown above. The projection of the phase space motion onto the u(x  = f ,  z = 0, t )  vs. 
w(x = 0, x = t ,  t )  plane shown in the top row, and the phase plots of the horizontal 
velocity u(z = i, z = 0, t )  shown in the second row, both provide new information 
about the oscillations. In  the bottom row of panels we show the kinetic-energy return 
plots in which successive maxima of the kinetic energy are plotted against each other. 
Numerical artifacts in determining the maxima are eliminated by making the 
criterion for a maximum relatively coarse. In figure 11 (a )  we show our only example 
from the first oscillatory branch, the SP2 solution at RT = 10100, with a double- 
banded structure. The remaining examples in figures 11 (b)-(e) are all taken from the 
second branch: RT = 10475 (SP2), RT = 10508 (IS3), RT = 10625 (C) and 
RT = 11 000 ( C ) .  We observe that as the degree of chaos increases with increasing RT, 
so does the region in phase space visited by the trajectory. The gross features such 
as the approximate symmetry of the trajectory, and the spiralling motion around 
two symmetrically disposed points in phase space, remain unchanged. However, 
increasing RT serves to broaden the structures in phase space, even though the 
impression of a folded ribbon is preserved. The return maps on the other hand show 
a much more dramatic evolution. We conjecture, by analogy with the fifth-order 
model (Da Costa et al. 1981, Knobloch & Weiss 1983), that the trajectory approaches 
the (generalized) saddle corresponding to the unstable steady solutions that bifurcate 
from R g  along its stable manifold and leaves again along the unstable manifold. A 
point describing the trajectory remains for a relatively long time near these two points 
in phase space. 

The results for the second oscillatory branch are shown schematically in figure 6, 
while all our numerical solutions are classified in table 2. From this we conclude that 
we have traversed at least two bubbles on the second or subsequent branches while 
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0.4 

0’5 t 
. 

I 

. 

0.2 I 4 4 4  
9000 loo00 11OOo 

R, 
FIQURE 12. Solutions with 7 = 0.316 and R, = 104. The mean cycle period P i s  plotted against R, 
for most of the solutions in table 2. S1 solutions are denoted by squares, P1 solutions by diamonds 
and other periodic solutions by filled circles. Aperiodic solutions are shown by hollow circles. The 
arrows indicate three separate S3 windows. 

increasing R,, each with chaotic intervals and periodic windows. As can be seen 
from figures 7 ,  9 and 10, it is always easy to identify that non-zero value is of the 
frequency for which @(w)  attains an absolute maximum. It is then possible to order 
the various solutions in terms of the mean cycle period, P =  47t /W.  For a periodic 
solution, characterized as Sn or Pn, W = o,, and P = P / n ;  for aperiodic solutions, P 
is a measure of the average cycle period. In figure 12 we plot P against R, for the 
solutions discussed in this section, indicating various periodic solutions that have been 
obtained. This is a convenient way of summarizing our results. The distinction 
between the first and second oscillatory branches is apparent and it is clear that P 
increases rapidly towards the end. Periodic and chaotic solutions beyond the second 
oscillatory branch show considerable scatter but there is evidence for the presence 
of at least four bubbles in the diagram. These points clearly correspond to a more 
complicated bifurcation diagram than those obtained in figures 1 (a)  and 2 (a). In the 
next subsection we explain how such behaviour is related to theoretical results. 

3.4. Origin of the complicated dynamics 
In this section we offer an explanation for the complex behaviour exhibited by 
solutions of the partial differential equations (1 )-( 3). This explanation depends on 
results which have only been proved for much simpler systems, and the extension 
to our problem relies on reasonable conjecture rather than on formal proof. It is, 
however, supported by numerical and analytical results for the fifth-order system 
(21)-(25). Moreover, it provides the only rationalization of our results that is 
currently available. There exist related problems for which it is possible to provide 
a more elaborate treatment. Thus Guckenheimer (1981) has rigorously analysed a 
reaction-diffusion system, while Arnkodo et al. ( 1 9 8 5 ~ )  have derived normal form 
equations for a tricritical bifurcation in rotating thermosolutal convection. In what 
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follows we shall first consider the transition to chaos and the related bubble structure ; 
then we shall indicate how the Shil’nikov mechanism leads to the formation of 
bubbles near a heteroclinic bifurcation. 

3.4.1. Bubbles and the transition to chaos 
For one-dimensional maps the period-doubling route to chaos is familiar and well 

understood (May 1976; Collet & Eckmann 1980; Holmes & Whitley 1984, and 
references therein.) Let x+f,(z) be a non-invertible single-humped map of the unit 
interval into itself, depending on a bifurcation parameter p. Then there is a universal 
period-doubling structure which occurs asymptotically at a geometric rate SF such 
that, if p N  denotes the value of p at which a bifurcation to a solution of period 2N 
occurs, then 

(Feigenbaum 1978). At the accumulation point pm there are aperiodic solutions; 
beyond it there are semiperiodic bands that merge pairwise as p is increased further 
(Lorenz 1979). Thus the semiperiodic bands undergo a period-halving cascade which 
accumulates backwards at the same rate SF. It is punctuated by a succession of 
windows in p within which there are periodic solutions. Each window is characterized 
by the periodicity of the basic solution ; these periodic solutions are born in saddle-node 
bifurcations and their appearance is therefore heralded by intermittency (Pomeau 
& Manneville 1980). As p is increased each basic periodicity undergoes its own 
period-doubling cascade leading to more aperiodic solutions. The sequence of new 
periodicities is given by Sharkovsky’s (1964) ordering (Guckenheimer & Holmes 1983) 
and the order of actual appearance of the periodic windows, as well as the number 
of windows of each periodicity, has been established by Metropolis, Stein & Stein 
(1973). 

This description can be extended to multi-dimensional maps (Collet, Eckmann & 
Koch 1981), but the tidy ordering of periodic windows disappears. Holmes & Whitley 
(1984) discuss two-dimensional maps of the form (z, y) + (y, -m+f,(y)), which 
collapse into a one-dimensional map as s+O; the best-known example is the HBnon 
(1976) map, with f,(y) = py(1 -y), which is contracting for 0 < E < 1 and collapses 
into the familiar logistic map aa E + O .  For finite E the ordering of saddle-node bi- 
furcations (which introduce the periodic windows) is upset so that, for example, the 
initial period-doubling sequence is interrupted by the window based on period 3 
(Arn6odo et al. 1983) ; all that can be assured is that the canonical order is preserved 
for windows with low periodicities, provided E is sufficiently small (Holmes 1984). 

The universal period-doubling structure extends also to systems of ordinary 
differential equations (Feigenbaum 1980). In figure 13 (a) the horizontal direction 
represents the space of all ordinary differential equations (of finite order) and the 
bifurcation parameter p is plotted vertically. The horizontal surfaces, labelled PN, 
correspond to values p N  at which the period of the solution of the corresponding 
differential equation doubles. Consider now a particular differential equation depend- 
ing on a parameter such as RT. As RT is varied the differential equation varies too. 
Thus changes in RT typically correspond to horizontal and vertical displacements 
in figure 13(a). If increasing RT produces a path that crosses a certain number of 
bifurcation surfaces, then the differential equation will exhibit that number of 
period-doubling bifurcations. If p( RT) is double valued, then increasing RT further 
results in a backward passage through the bifurcation sequence (cf. figure 13a) and 
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P 

SP 1 

FIQURE 13. ( a )  Bifurcation structure in the space of functions. Horizontal lines are bifurcation 
surfaces, at which solutions appear as indicated. Curved lines indicate typical paths through this 
diagram as the parameter R ,  is varied for different values of R,. (a) Variation of normalized period, 
p, with the bifurcation parameter, R,, in the neighbourhood of a homoclinic bifurcation at R$?, 
when 4 < 6 < 1. (c) The same, when 0 < 6 < 4. Full, broken and dotted lines represent stable, 
non-stable and unstable solutions respectively. Successive branches meet at saddle-node bifurcations 
and bubbles are bounded by pitchfork bifurcations. 

a bubble is formed. Now suppose that the system depends on a second parameter 
R,. Then by varying R, it  may be possible to arrange that upon varying R, (for 
fixed R,) it is possible to penetrate deeper and deeper into the bifurcation set until 
chaotic behaviour is observed. This description allows us to explain the development 
of a single bubble in terms of a single-humped map fp. We could alternatively have 
introduced a double-humped map and the Shil'nikov mechanism (to be discussed 
below) corresponds to a many-humped map. Note, however, that our visualization 
of the abstract structure of the problem is quite general; thus RT need not refer to 
a parameter (or a set of parameters) in a differential equation and could equally refer 
to changes in the differential equation arising for instance by the addition of new 
terms. 

Beyond the accumulation point, labelled Pa, lie semiperiodic bands, culminating 
with SP1. Superimposed upon this sequence is a similar pattern corresponding to 
every periodic window created by a saddle-node bifurcation. Although there is no a 
priori reason to expect a canonical ordering of these windows, numerical investigation 
of fifth-order systems suggests that the Sharkovsky ordering is followed, at  least for 
low-period cycles in the first bubble (Knobloch & Weiss 1983). In the solutions 
described in $3.2 we could penetrate as far as the SP1 level on the first oscillatory 
branch but did not detect any periodic windows. The prominence of a window 
depends on its proximity to the vertex of the curve ,u(R,, R,) in figure 13 (a) : if it 
occurs near the vertex the window will appear wide in RT-space. By changing R,, 
different windows can therefore be made prominent and easier to find. 

Figure 13(a) has been drawn for equations possessing a symmetry which allows 
periodic solutions that are symmetrical in time. This temporal symmetry is given by 
(19) for the partial differential equations and by (27) for the fifth-order system. It 
is well-known that a symmetrical oscillation cannot undergo a period-doubling 
bifurcation (P. Swinnerton-Dyer 1980, private communication ; Swift & Wiesenfeld 
1984). If period-doubling occurred, the associated return map would have to have 
a single eigenvalue - 1.  The symmetry would then imply the existence of a return 
map with a single real eigenvalue h such that h2 = - 1,  which is impossible. 
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FIGURE 14. Symmetrical periodic solutions for partial differential equations with A = 1.414, 
CT= l.O.(a)S3windowfor.r =0.316,RS = 104atR, = 1075O.(b)S5windowfor~ = 0.1, R, = 103.6 
at RT = 3674. Orbits are projected onto the ((u), N,)-plane. 

Symmetrical solutions typically undergo a bifurcation that breaks the symmetry 
before indulging in a cascade of period-doubling bifurcations. In  figure 13 (a) there 
is therefore a surface, labelled P1, corresponding to bifurcation to asymmetry. 
Similarly, the two asymmetrical semiperiodic bands finally merge to produce 
aperiodic solutions that are (statistically) symmetrical (Knobloch & Weiss 1983). 
Within this region there are windows based on cycles with odd periodicity; the last 
window to appear is that based on 53. Seeing this window implies that, if the system 
is sufficiently dissipative to be described by a one-dimensional map, there are 
windows with asymmetrical and symmetrical orbits of all possible periodicities at 
lower values of R,. Since these windows can be exceedingly narrow, one should not 
expect to be able to locate them without special effort, if at all. Even in low-order 
systems this is a delicate task, and detailed study of a fifth-order model of 
magnetoconvection (Knobloch & Weiss 1983) reveals the complexity of the window 
structure and the difficulties in locating individual windows. 

In our numerical results, the bifurcation to asymmetry leads to the appearance of a 
peak at o1 = ?p0 (and its harmonics) in the power spectrum of the kinetic energy E. 
At each successive period-doubling bifurcation, new peaks appear at frequencies 

... . We estimate that bifurcations to solutions P2, P4, P8 on the first 
oscillatory branch occur, respectively, at RT = 9900, 10040, 10068 (cf. $3.2). Now 
the Feigenbaum constant 6, can be found from the values of RT at which successive 
bifurcations occur, since the slope ap/aR, factors out of equation (30) for N 
sufficiently large. (Note, however, that corrections to the Feigenbaum scaling do 
depend on the slope and are not universal.) From our results we estimate 6, x 5.0, 
with an error of some 20 % (cf. equation (30)). 

Beyond the accumulation point the spectral peaks broaden ; if the lowest frequency 
peak corresponds to a frequency 2-N w l ,  we speak of a semiperiodic solution of period 
N. As R, is increased this peak is submerged in the noise, leaving a solution of period 
N -  1. Thus we are able to classify the aperiodic solutions in figures 7, 9 and 10. 
Although we have not searched systematically for periodic windows (such a search 
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is hardly practicable) we have found three symmetrical period-3 windows on the 
second and subsequent branches of figure 6. Figure 14(a) shows a symmetrical 
trajectory for h = 1.414, projected onto the ((u), NT)-plane, while figure 7 gives 
details of the window at RT x 10510. Once again, the first bifurcation breaks the 
symmetry. The symmetrical orbit of figure 7 (a) has peaks in the spectrum a t  +l and 
&, while the asymmetrical orbit of figure 7 (b) has a peak at  and the P6 solution 
at RT = 10516 has a peak at &ul. The aperiodic SP3 solution at  RT = 10517 retains 
a peak at  ~ 1 ,  which is submerged by noise in the SS3 spectrum at RT = 10520, in 
figure 7(c). We have found no windows based on an asymmetrical period-3 orbit 
though we have located windows based on period 5, period 6 and period 9 in 
computations with 7 = 0.1. As indicated above, the ease with which a particular 
window is picked up depends on the curve p ( R T )  ; so it is not surprising that different 
windows are found in non-systematic studies a t  different values of the parameters 
7 and R,. 

3.4.2. Homoclinic and heteroclinic bifurcations 
It remains to address the origin of the complex dynamics described in $93.2-3.3. 

We shall argue that the chaotic dynamics and the repeated bubble structure are 
associated with the presence of a heteroclinic orbit, connecting a pair of saddle foci, 
in the partial differential equations (1)-(3). The importance of homoclinic (or 
heteroclinic) orbits was established by Shil’nikov (1965; see also Guckenheimer & 
Holmes 1983, Guckenheimer 1984) who considered a third-order system of ordinary 
differential equations containing a homoclinic orbit connecting a saddle focus to itself 
(see figure 4b). A t  the saddle focus there are three eigenvalues: one (sl) is real and 
positive, while the others (d2, = -a f ip) form a complex-conjugate pair with 
negative real parts. Shil’nikov proved that, if a homoclinic orbit exists when a 
parameter RT = B$), such a system possesses complicated orbits in a neighbourhood 
of the homoclinic orbit whenever the three eigenvalues at R$) satisfy the inequality 

(31) 

More specifically, he proved that the Poincar6 return map associated with the 
homoclinic orbit contains a countably infinite number of Smale’s horseshoes. Each 
horseshoe contains an invariant Cantor set with an uncountable number of aperiodic 

-orbits and a countably infinite number of periodic orbits of arbitrarily long periods. 
It also contains a dense orbit, i.e. an orbit that comes arbitrarily close to each point 
of the invariant set. The orbits created are all non-stable since in any neighbourhood 
of such an orbit there is a non-recurrent orbit. 

The practical implications of these statements have been clarified by recent work 
(ArnBodo, Coullet & Tresser 1982; Gaspard 1983; Glendinning t Sparrow 1984; 
Gaspard et al. 1984; Arn6odo et al. 1985b). For values of R ,  near R$) the local 
behaviour of orbits near the saddle focus is described by a two-dimensional map, 
whose fixed points correspond to periodic orbits. Their behaviour can be understood 
by plotting the period P against RT for different values of 6 (Glendinning & Sparrow 
1984). For 6 > 1, P tends monotonically to infinity as R ,  +R$),  as indicated in figure 
2 (b). For 6 < 1 there is an extremely complicated set of bifurcations in which periodic 
orbits a& created by saddle-node bifurcations and then undergo period-doubling 
cascades producing aperiodic orbits. When 4 < 6 < 1, P(R,) wiggles its way to 
infinity, as sketched in figure 13(b).  The orbit first loses and then regains stability 

a 

81 
6=-<1, p * o .  
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at successive saddle-node bifurcations, and each complete wiggle corresponds to an 
extra loop around the singular point. As the orbit approaches homoclinicity, the 
period P therefore increases by 2n/P on successive stable branches, while the widths 
of the branches decrease rapidly, as exp ( -2na/P). Furthermore, there is a bubble 
created by period-doubling bifurcations on each stable branch. Within this bubble 
other periodic orbits appear at pitchfork or saddle-node bifurcations and these orbits 
may themselves develop secondary homoclinicities, with structures similar to that 
in figure 13 (b) .  When 0 < S < a, the structure is as shown in figure 13 ( c ) .  Now there 
are no stable orbits near homoclinicity , for the successive branches are alternately 
unstable or non-stable (as though the direction of time had been reversed). Such 
wiggles can only be joined to a stable periodic orbit through a pair of saddle-node 
bifurcations, as sketched in the figure. 

In a system with a symmetry like (26), similar behaviour will be associated with 
heteroclinic orbits connecting a symmetrical pair of saddle foci. In  the neighbourhood 
of a heteroclinic orbit satisfying the Shil’nikov inequality (31) we expect to see a 
highly complicated sequence of bifurcations, multiple attractors and complex time- 
dependent behaviour. Many of the periodic orbits will be stable (at least in narrow 
parameter ranges) and their period-doubling cascades, with the typical bubble 
structure, will be observable if ?j < 6 < 1. Explicit examples of such behaviour have 
been described by Sparrow (1982, chapter 8) and Glendinning & Sparrow (1984). 
Indeed, the predicted behaviour has been verified numerically for a fifth-order model 
of magnetoconvection (Knobloch & Weiss 1983; Bernoff 1985). In this system the 
.bubbles are formed by symmetry-breaking bifurcations and the asymmetrical orbits 
may become homoclinic. One possible secondary homoclinic orbit is sketched in figure 
4 (b )  : the trajectory spirals in to only one of the saddle foci, unlike the heteroclinic 
orbit in figure 4 (a) ,  and the symmetry requires the existence of a companion orbit. 
Within a bubble secondary homoclinic or heteroclinic orbits can give rise to 
parameter intervals in which no stable orbits exist. Since to one side of such an orbit 
there are no stable orbits, a trajectory will leave this region of phase space and (in 
our case) spiral into the steady solutions present at larger amplitude, creating a gap 
in the oscillatory branch. Unless extreme care is taken, the appearance of a gap would 
then be interpreted as the termination of the oscillatory branch, although by carefully 
studying the morphology of the orbit it is (in principle) possible to determine at which 
secondary homoclinic orbit a transition is occurring (cf. Knobloch & Weiss 1983; 
Bernoff 1985). 

For the fifth-order model described in $2.5 we know that there is a heteroclinic 
orbit for rs  close to r$J, connecting two real saddles, as shown in figure 1 (b ) .  For larger 
values of rs  the existence of such an orbit can be confirmed numerically. As rs  
increases the eigenvalues along the unstable steady branch evolve in the manner 
described in $2.5. We can explain the presence of period-doubling cascades, bubbles 
and multiple oscillatory branches for rs = 15 by computing the eigenvalues st 
(i = 1, ..., 5) along the unstable steady branch. Numerical calculations suggest that 
a heteroclinic orbit occurs at r$) k: 13.565; for this value of rT the eigenvalues are 
found to be 

sl= 1.730, ~,,,=-0.882*1.7323, ~ ,= -1 .753 ,  ~ ,= -4 .039 .  (32) 

Since the real negative eigenvalues sp, s5 are significantly less than Re s8 we expect 
that the dynamics in the vicinity of the saddle foci is adequately described by a 
three-dimensional system with S k: 0.510. The rest of the heteroclinic orbit may lie 
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in higher dimensions without affecting Shil’nikov’s result. Indeed Shil’nikov (1970) 
extended his theorem to cover a (2n+ 1)-dimensional case in which, in addition to 
(31), 

s1 > 0 > Res, > Rest (i = 4,6, ..., 2n). (33) 

where the eigenvalues st (i = 4, . . . ,2n) can be real without affecting the results. The 
complex dynamics present in the fifth-order system for r, = 15 thus finds a natural 
explanation in terms of the Shil’nikov mechanism. Moreover, in cases with S > 1 (so 
that (31) is not satisfied) no complicated dynamics is found. This can be checked, for 
example, for r, = 1 or for the solutions given by Da Costa et al. (1981). 

If we regard the partial differential equations (1)-(3) as a large but finite set of 
coupled ordinary differential equations, Shil’nikov’s (1970) theorem guarantees a 
complicated sequence of bifurcations, multiple attractors, etc., as RT approaches R$?, 
the value for which a heteroclinic orbit is present in the system (1)-(3), provided that 
the three dominant eigenvalues on the branch of unstable steady solutions satisfy 
Shil’nikov’s inequality (3 1 )  and the remaining eigenvalues satisfy (33). For R,  
sufficiently close to R(,C) those dominant eigenvalues are real and the existence of a 
heteroclinic orbit can be established analytically (Knobloch & Proctor 1981). 
Numerical calculations (cf. figure 2b) suggest its presence for larger values of R,. We 
conjecture that the heteroclinic orbit persists but (by analogy with the fifth-order 
system) that for R ,  > 103.5 the eigenvalues s2, s3 at R(TC) form a complex-conjugate 
pair and both (31) and (33) are satisfied. 

Inspection of our numerical solutions provides convincing evidence for a saddle 
focus. The S1 solution at  RT = 10300, in figure 9 (a), loops once around the singular 
point, while the P2 solution at RT = 10600, in figure 10 ( e ) ,  has developed extra loops. 
More and more loops appear in the chaotic solutions (see the second row of figure 11) 
and just before the end of the oscillatory branch there are aperiodic trajectories that 
describe up to five successive loops. We have not attempted to obtain unstable steady 
solutions of the system (1)-(3) nor is it  feasible to compute their eigenvalues. 
However, the similarity between our numerical results in figure 12 and the behaviour 
sketched in figure 13(b) is sufficiently close to suggest that the leading eigenvalues 
satisfy (31), with + < 6 < 1.  

In particular, we note the presence of a complete bubble on the first oscillatory 
branch, which is separated from the second branch by an interval corresponding to 
the rotation period about the focus. Owing to non-local effects the first two branches 
are apparently broadened and displaced to lower values of RT. The second branch 
probably extends over the range 10300 < RT < 10700, without any obvious gaps. 
Above it lie fragments of several branches, which cannot be separated by P alone. 
We note, however, that there are three different 53 windows, apparently from 
different branches. There are also indications that windows based on saddle-node 
bifurcations are displaced from the bubbles to which they are related (as might be 
expected from two-dimensional maps). There are several examples of multiple 
solutions, e.g. at RT = 10800, with a chaotic solution and an S3 orbit obtained from 
different initial conditions and apparently on different branches. (Of course, any 
chaotic solution might be a case of preturbulence, which would disappear if the 
equations were integrated for long enough. For partial differential equations we 
cannot compete with the two-dimensional map studied by Gambaudo & Tresser 
(1983), where transient chaos gave way to periodic behaviour after 1.5 x lo6 
iterations.) 

The asymmetrical appearance of the points toward the right of figure 12 suggests 
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that there may be gaps (corresponding to subsidiary homoclinic orbits) or that 6 may 
bc close to unity. In the fifth-order system, with 6 x 0.51, we were unable to h d  
any stable oscillatory solutions after the transition to chaos in the first bubble, 
perhaps because the system was approaching the situation in figure 13 ( c ) .  Conversely, 
in the fifth-order model of magnetoconvection, with S x 0.95, chaos was easily found 
though nothing more than the initial bifurcation to asymmetry has turned up for the 
relevant partial differential equations. We suspect that the latter have S < so that 
any complicated dynamics is unstable. These differences show the limitations of our 
truncated models. 

4. Evolution of the oscillatory branch for 7 = 0.1 
In this section we describe how the simple oscillatory branch illustrated in figure 

2 (a )  evolves into the complex structure represented in figure 6. Since it is impossible 
to explore a five-dimensional parameter space in any systematic way, Huppert & 
Moore (1976) set t~ = 1 and h = 2+, and chose two values of7: for 7 = 0.1 and 7 = 0.316 
they investigated behaviour along the branch of oscillatory solutions as R ,  was 
increased for four fixed values of R,. Their results with 7 = 0.316 were discussed in 
$2.3 : for R, = lo3 solutions remain periodic until the oscillatory branch terminates, 
apparently with a heteroclinic orbit; a bifurcation to asymmetry appears when 
R, = 103.5 and all the structure discussed in $3 is present when R, = lo4. The 
development of the first bubble can be explained by reference to figure 13(a). It is 
computationally more convenient to make runs with 7 = 0.1, since interesting 
behaviour occurs at somewhat lower values of R,. A brief sampling of oscillatory 
solutions at 7 = 0.1 has also recently been reported by Chang et al. (1982), though 
with modified boundary conditions. Following Huppert & Moore, we set CT = 1,  
A = ~, T = 0.1 and vary R, for each of R, = 102.5, lo3 and 103.s. Our new results 
provide a substantially more detailed description of bifurcations along the oscillatory 
branch. These results are summarized in table 3. 

For 7 = 0.1, convection sets in as overstable oscillations for all R, > RP) x 14.6. 
When R, is only slightly greater than RP) the oscillatory branch terminates with a 
heteroclinic orbit connecting the symmetrical pair of saddle points corresponding to 
unstable steady solutions (Knobloch & Proctor 1981) as explained in $2.2. As R, is 
increased the saddle points change into saddle foci and trajectories spiral in towards 
the unstable fixed points (cf. $82.5 and 3.4). If the Shil'nikov inequality (31) is 
satisfied a t  the saddle foci then we may expect to find chaotic behaviour. 

The first set of runs was made with R, = 102e5 x 316. Then R$) = 970 and 
symmetrical, periodic oscillations were found for lo00 < R, < 1200. A bifurcation to 
asymmetry occurs at RT x 1225, followed by a period-doubling at  R, x 1258. The 
period-doubling sequence reaches its accumulation point by R, x 1263 and the 
oscillatory branch terminates at R, = 1265, possibly on a subsidiary homoclinic orbit 
(cf. $3.4.2). For this value of R,, therefore, there is apparently a single stable 
oscillatory branch, with a cascade of period-doubling bifurcations near its end. 

The next set of runs was for R, = lo3; by this value there are two parts to the 
oscillatory branch, with a complete bubble on each part. The branch begins at 
R$) = 1366 and there is a bifurcation from symmetry to asymmetry at R, z 1850, 
followed by a bifurcation to period 2 at RT x 1900. Semiperiodic solutions are found 
for 1910 < R, < 1925, with bifurcations back to give period 4 at R, = 1930, period 
2 at R, = 1940, asymmetrical orbits at R ,  = 1950 and symmetry by R, = 1960. 
Thus there is a complete bubble on the first oscillatory branch. The transition to a 
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R, = 10*3 R,  = 103 R, = 103.5 

R$?’ = 970 R$?’ = 1346 R$?’ = 2535 

R ,  = 1000 S1 RT = 1700 S1 R ,  = 3500 P1 
1050 81 1750 S1 3600 P1 
1100 s 1  1775 S1 3620 P2 
1150 S1 1800 S1 3630 P2 
1200 s 1  1850 P1 3640 P4 
1225 P1 1875 P1 3650 SP2 
1250 P1 1900 P2 3660 SP2 
1255 P1 1910 SP 3670 C 
1260 P2 1920 SP4 3673 C 
1262 P4 1925 SP4 3674 55 
1265 t 1930 P4 3676 P5 

1940 P2 3677 P10 
1950 P1 3678 P10 
1960 S1 3679 SPlO 
1975 S1 3680 SPlO 
1978 P1 3690 C 
1980 P2 3700 c 
1982 SP4 3750 C 
1985 P2 3800 SP2 
1987 P9 3805 P4 
1990 t 3810 P2 

3820 P1 
3830 P1 
3840 P1 
3850 S1 
3870 S1 
3900 c 
3950 C 
4200 t 

t Solutions evolve to steady branch. 

TABLE 3. Classification of numerical solutions of partial differential equations obtained for aspect 
ratio h = 1.414, with T = 0.1 and u = 1 

second oscillatory branch takes place unobtrusively around RT x 1975 and is 
followed by bifurcations to asymmetry (RT = 1978), P2 (RT = 1980), SP4 
(RT = 1982) and back to P2 (RT = 1985). At RT = 1987 there is an asymmetrical 
solution with period 9 and by RT = 1990 the oscillatory branch has terminated. 

With R, = 10s-5 z 3162 (R$) = 2535), the overall behaviour is similar to that 
described in $3. The bubble on the first oscillatory branch is well-developed, with 
bifurcations from asymmetrical P i  to P2 and back again at RT z 3620, 3815 
respectively and semiperiodic solutions in the range 3650 < RT < 3800. Within this 
range we have located a symmetrical period-5 (S5)  window. Figure 14(b) shows a 
trajectory for RT = 3674, projected onto the ((u), N,)-plane. This is followed by a 
(slightly) asymmetrical P5 solution at RT = 3676 and P10 at RT = 3677. This is the 
only window that we have found on the first oscillatory branch; we conjecture that 
it is the last window for this value of R, and is therefore sufficiently prominent to 
be detected (cf. 83.4.1). 

We have also explored behaviour a t  R, = lo4 and 104a6, when the Hopf bifurcations 
at  R$) are subcritical (Huppert & Moore 1976). The results are inconclusive, owing 
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to limited spatial resolution, but they suggest the appearance of a second Hopf 
bifurcation, so that trajectories lie on a two-torus (instead of a limit cycle) in phase 
space. We suspect that this is followed by frequency locking and a period-doubling 
cascade that leads to chaos. Such behaviour is familiar from other calculations (e.g. 
Jones, Weiss & Cattaneo 1985) as well as from experiments, notably those of 
Libchaber et al. (1982,1983) on convection in mercury. More runs at higher resolution 
are needed before the bifurcation structure for R, 3 lo4 can be unambiguously 
determined. 

5. Conclusions 
Transitions from periodic to chaotic oscillations in thermosolutal convection were 

found by Huppert & Moore (1976), who appreciated their significance (Huppert 1976, 
1977), but misinterpreted the bifurcation to asymmetry as a period-doubling 
bifurcation. We have conducted a more systematic investigation of these transitions 
and demonstrated that it takes place by a cascade of period-doubling bifurcations. 
As an aid to interpreting the complex dynamics of this full system we studied a 
truncated fifth-order model. The model is of limited validity but its bifurcation 
structure remains sufficiently close to that of the full problem for i t  to be used to 
explain the origin of the chaotic behaviour that is observed. As we have seen, the 
onset of chaos is apparently associated with homoclinic and heteroclinic bifurcations 
where the oscillatory branch meets the unstable portion of the steady branch. 

Our study of different types of periodic, aperiodic and semiperiodic behaviour 
comprised about 200 runs with different values of R,, R,, 7 and A. This extensive 
survey has clarified a number of issues. First, we have established that the transition 
to chaos proceeds via a sequence of period-doubling bifurcations after a preliminary 
bifurcation to asymmetry, and that the first three period doublings are consistent 
with the presence of a Feigenbaum cascade. Beyond the accumulation point of this 
cascade we found semiperiodic solutions, with trajectories that wandered aperiod- 
ically within tubes enclosing the unstable periodic solutions. As the Rayleigh number 
was increased, the tubes coalesced and low-frequency peaks in the power spectrum 
were successively submerged in noise. Interspersed with these chaotic bands are a 
number of periodic windows, i.e. intervals of R, values for which there are attracting 
periodic solutions, each of which forms part of a period-doubling sequence. We found 
examples with basic periods of 9, 5 and 3, of which the last appeared to be most 
prominent. In the most extreme regime in T that we investigated, there were 
indications that the bifurcation pattern changed: the first bifurcation led to  doubly 
periodic motion on a two-torus, followed by frequency locking and a sequence of 
period-doubling bifurcations. These last results, however, need to be confirmed by 
more accurate computations. 

The bifurcation structure on the oscillatory branch is complicated by the presence 
of bubbles, with forward and backward cascades of bifurcations, and of hysteresis 
between the first and second oscillatory branches. We have argued that this 
behaviour, as well as the complex window structure, is to be expected as the 
parameter value at which the Shil’nikov bifurcation occurs (cf. $3.4) is approached. 
Indeed, it is likely that the behaviour is even more complex than our calculations 
have revealed (cf. Glendinning & Sparrow 1984). 

Chaotic solutions have been found for many systems of partial differential 
equations. Holmes & Marsden (1981) have established the presence of a single 
horseshoe for an example arising in magnetoelasticity. The Shil’nikov mechanism 
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produces infinitely many horseshoes. Guckenheimer (1981) proves that it is present 
near a codimension-two bifurcation in a reaction4iffusion problem described by 
partial differential equations in one space dimension. The same mechanism is 
typically also found near codimension-three bifurcations in continuous systems 
(Arn6odo et al. 1985 b ) ,  as has recently been demonstrated for thermosolutal convection 
in a rotating system (Arn6odo et al. 1985a; Arn6odo & Thual 1985). R. L. Sani 
(private communication) assures us that period doubling has been found in simulations 
of three-dimensional Rayleigh-BBnard convection with rigid boundaries (cf. Upson 
et al. 1981). In  other studies of three-dimensional convection, whether by use of 
truncated modal equations (Toomre, Gough & Spiegell982) or with the full equations 
(Schubert & Straus 1982; McLaughlin & Orszag 1982; Curry et al. 1984) the 
mechanism of transition to chaos still remains unclear. 

Period doubling has also been observed in several experiments on other continuous 
systems. These include experiments on interacting baroclinic waves (Hart 1984), and 
the Belousov-Zhabotinsky reaction-diffusion system (Simoyi, Wolf & Swinney 1982). 
In the convection experiments this route to chaos is found only when the system is 
constrained by lateral boundaries so that only a few rolls are present. With wider 
cells, chaos may appear immediately after the onset of convection so that the 
transition process cannot be identified. It seems that period doubling is a feature of 
systems whose dynamics is constrained so that only a few modes can be excited. In  
our problem, the stringent geometrical constraints of two-dimensionality and 
symmetry about roll centres, and the imposed boundary conditions, (8) and (9), force 
solutions of the partial differential equations to behave somewhat like those of the 
fifth-order model. We have yet to find out how robust the attractors described in this 
paper will prove to be when these constraints are relaxed. In particular, we may 
expect the behaviour to change and to become more complicated when the symmetry 
constraint is removed, or the boundary conditions are changed to allow sideways 
fluxes, or when three-dimensional disturbances are admitted. We expect that the 
solutions described here would then be unstable to wider classes of disturbances, 
which might themselves become chaotic. With such a plethora of instabilities it would 
be difficult (and perhaps pointless) to analyse the transition to chaos. 

The system we have studied already provides a surprisingly rich range of 
behaviour. We have been able to recognize patterns of bifurcations that are common 
to a variety of problems in a fully nonlinear regime, though we are not yet able to 
offer a physical, rather than a mathematical, explanation for the transitions that we 
have observed. However, studies of simpler model systems do suggest that period- 
doubling cascades are a characteristic feature of problems where there is a balance 
between opposing forces that are out of phase, and a heteroclinic (or homoclinic) orbit 
exists at some value (possibly infinite) of a stability parameter (e.g. Lorenz 1963; 
Moore & Spiegel 1966; Baker et al. 1971 ; Marzec & Spiegel 1980 ; Knobloch & Weiss 
1983; Glendinning & Sparrow 1984; Jones et al. 1985; Arn6odo et al. 1985b; Spiegel 
1985). 

In conclusion, we emphasize that transitions to temporal chaos for simple systems 
with limited numbers of spatial modes are only part of a much larger problem. Real 
fluid-dynamical systems have complex spatial structure and spatial interactions can 
lead to complicated patterns of behaviour. Indeed, Bretherton & Spiegel(l983) have 
shown that such interactions may lead to chaotic behaviour in thermosolutal 
convection when R ,  is only marginally greater than R$?I and the horizontal domain 
is very wide. Studies like our own suggest that investigating transitions to chaos for 
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simple systems is a fruitful line of research but there is still a long way to go before 
such systems can be related to real turbulence, with its intrinsically rich and 
intermittent spatial structure. 
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