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Project on stratified shear flows

Background

The stabilizing buoyancy force due to shear is an important aspect to shear-flow instabilities and is
particularly relevant in meteorology. Taylor, G. I. (1931) and Goldstein (1931) published the first
work on this problem in the same issue of Proc. Roy. Soc.

In Handout 9 on stratified shear flows we discussed the Goldstein-Taylor equation as a straightforward
generalization of Rayleigh’s instability equation. We arrived at the equation

ci

∫
N2 − 1

4(U ′)2

|U − c|2
|ψ|2 = −ci

∫ (
|ψ′|+ k2|ψ|2

)
dx (1)

with c = cr + ici. This shows that the flow cannot be unstable if N2 − 1
4(U ′)2 > 0 everywhere in the

domain. In terms of the gradient Richardson number Ri(z) = N2/(U ′)2, this means Ri > 1/4 for
stability.

Project details

The idea of the project is to solve this equation numerically. To solve the fully nonlinear problem, we
can use a hydrodynamics code such as Athena1, Dedalus2, or the Pencil Code3. The Rayleigh
instability problem is a limiting case (ν → 0) of the Kelvin-Helmholtz instability, which is used as a
common test problem for numerical codes. It has been used last Summer during the Bootcamp for
Computational Fluid Dynamicshttp://www.nordita.org/~brandenb/teach/PencilCode/LCDworkshop2016/
at the Laboratory for Computational Dynamics (LCD), which is upstairs in the third floor. See
Lecoanet et al. (2016) for details, but in the absence of stratification.

1. Review the literature on numerical studies of the stratified shear-flow problem.

2. Start by solving the usual Kelvin-Helmholtz instability and check the validity of the inflection-
point theorem and the more stringent Fjørtoft (1950) theorem.

3. Add constant gravity to the problem. Verify that the resulting stratification obeys the hydrostatic
solution. You may consider either the fully compressible case (e.g., with an isothermal equation
of state) or the incompressible Boussinesq problem.

4. Check numerically the validity of the Richardson criterion, which says that the flow cannot be
unstable if N2− 1

4(U ′)2 > 0 everywhere in the domain. Here, N is the buoyancy frequency. In
terms of the gradient Richardson number Ri(z) = N2/(U ′)2, this means Ri > 1/4 for stability.
The simplest case is that on an isothermal layer. Use g = −ŷg with g > 0 and show that in
that case,

∇ ln ρ = g/γc2s = −ŷ/Hρ, ∇s/cp = +ŷ (γ − 1)/Hρ. (2)
1http://www.astro.princeton.edu/~jstone/athena.html
2http://dedalus-project.org/
3http://pencil-code.nordita.org/



If you choose to work with the Pencil Code, you may start with a run that has been prepared
in http://lcd-www.colorado.edu/~axbr9098/teach/PencilCode/material/KelvinHelmholtz/
gravity/reference_run/.

5. Consider the same problem in the presence of turbulence. Here, the turbulence can be driven
by an external monochromatic body force (forcing wavenumber kf). However, you may also
consider the problem of turbulence as a result of the shear-flow instability itself.

6. Review your results in view of recent discussions of the validity of Richardson criterion in the
literature; see Zilitinkevich et al. (2007) who claim that “The proposed model permits the
existence of turbulence at any gradient Richardson number”.
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